With the popularity of online learning in educational settings, knowledge tracing(KT) plays an increasingly significant role. The task of KT is to help students learn more effectively by predicting their next mastery ...With the popularity of online learning in educational settings, knowledge tracing(KT) plays an increasingly significant role. The task of KT is to help students learn more effectively by predicting their next mastery of knowledge based on their historical exercise sequences. Nowadays, many related works have emerged in this field, such as Bayesian knowledge tracing and deep knowledge tracing methods. Despite the progress that has been made in KT, existing techniques still have the following limitations: 1) Previous studies address KT by only exploring the observational sparsity data distribution, and the counterfactual data distribution has been largely ignored. 2) Current works designed for KT only consider either the entity relationships between questions and concepts, or the relations between two concepts, and none of them investigates the relations among students, questions, and concepts, simultaneously, leading to inaccurate student modeling. To address the above limitations,we propose a graph counterfactual augmentation method for knowledge tracing. Concretely, to consider the multiple relationships among different entities, we first uniform students, questions, and concepts in graphs, and then leverage a heterogeneous graph convolutional network to conduct representation learning.To model the counterfactual world, we conduct counterfactual transformations on students’ learning graphs by changing the corresponding treatments and then exploit the counterfactual outcomes in a contrastive learning framework. We conduct extensive experiments on three real-world datasets, and the experimental results demonstrate the superiority of our proposed Graph CA method compared with several state-of-the-art baselines.展开更多
Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the intro...Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features.展开更多
A method of knowledge representation and learning based on fuzzy Petri nets was designed. In this way the parameters of weights, threshold value and certainty factor in knowledge model can be adjusted dynamically. The...A method of knowledge representation and learning based on fuzzy Petri nets was designed. In this way the parameters of weights, threshold value and certainty factor in knowledge model can be adjusted dynamically. The advantages of knowledge representation based on production rules and neural networks were integrated into this method. Just as production knowledge representation, this method has clear structure and specific parameters meaning. In addition, it has learning and parallel reasoning ability as neural networks knowledge representation does. The result of simulation shows that the learning algorithm can converge, and the parameters of weights, threshold value and certainty factor can reach the ideal level after training.展开更多
In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS ...In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS model.KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm,then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning,then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning.Finally,through the full connection layer and sigmoid function to get the prediction ratings,and the items are sorted according to the prediction ratings to get the user’s recommendation list.KGRS is tested on the movielens-100k dataset.Compared with the related representative algorithm,including the state-of-the-art interpretable recommendation models RKGE and RippleNet,the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy.展开更多
Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling com...Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen.展开更多
This paper outlines the necessity of the knowledge representation for the geometrical shapes (KRGS). We advocate that KRGS for being powerful must contain at least three major components, namely (1) fu...This paper outlines the necessity of the knowledge representation for the geometrical shapes (KRGS). We advocate that KRGS for being powerful must contain at least three major components, namely (1) fuzzy logic scheme; (2) the machine learning technique; and (3) an integrated algebraic and logical reasoning. After arguing the need for using fuzzy expressions in spatial reasoning, then inducing the spatial graph generalized and maximal common part of the expressions is discussed. Finally, the integration of approximate references into spatial reasoning using absolute measurements is outlined. The integration here means that the satisfiability of a fuzzy spatial expression is conducted by both logical and algebraic reasoning.展开更多
With this work, we introduce a novel method for the unsupervised learning of conceptual hierarchies, or concept maps as they are sometimes called, which is aimed specifically for use with literary texts, as such disti...With this work, we introduce a novel method for the unsupervised learning of conceptual hierarchies, or concept maps as they are sometimes called, which is aimed specifically for use with literary texts, as such distinguishing itself from the majority of research literature on the topic which is primarily focused on building ontologies from a vast array of different types of data sources, both structured and unstructured, to support various forms of AI, in particular, the Semantic Web as envisioned by Tim Berners-Lee. We first elaborate on mutually informing disciplines of philosophy and computer science, or more specifically the relationship between metaphysics, epistemology, ontology, computing and AI, followed by a technically in-depth discussion of DEBRA, our dependency tree based concept hierarchy constructor, which as its name alludes to, constructs a conceptual map in the form of a directed graph which illustrates the concepts, their respective relations, and the implied ontological structure of the concepts as encoded in the text, decoded with standard Python NLP libraries such as spaCy and NLTK. With this work we hope to both augment the Knowledge Representation literature with opportunities for intellectual advancement in AI with more intuitive, less analytical, and well-known forms of knowledge representation from the cognitive science community, as well as open up new areas of research between Computer Science and the Humanities with respect to the application of the latest in NLP tools and techniques upon literature of cultural significance, shedding light on existing methods of computation with respect to documents in semantic space that effectively allows for, at the very least, the comparison and evolution of texts through time, using vector space math.展开更多
基金supported by the Natural Science Foundation of China (62372277)the Natural Science Foundation of Shandong Province (ZR2022MF257, ZR2022MF295)Humanities and Social Sciences Fund of the Ministry of Education (21YJC630157)。
文摘With the popularity of online learning in educational settings, knowledge tracing(KT) plays an increasingly significant role. The task of KT is to help students learn more effectively by predicting their next mastery of knowledge based on their historical exercise sequences. Nowadays, many related works have emerged in this field, such as Bayesian knowledge tracing and deep knowledge tracing methods. Despite the progress that has been made in KT, existing techniques still have the following limitations: 1) Previous studies address KT by only exploring the observational sparsity data distribution, and the counterfactual data distribution has been largely ignored. 2) Current works designed for KT only consider either the entity relationships between questions and concepts, or the relations between two concepts, and none of them investigates the relations among students, questions, and concepts, simultaneously, leading to inaccurate student modeling. To address the above limitations,we propose a graph counterfactual augmentation method for knowledge tracing. Concretely, to consider the multiple relationships among different entities, we first uniform students, questions, and concepts in graphs, and then leverage a heterogeneous graph convolutional network to conduct representation learning.To model the counterfactual world, we conduct counterfactual transformations on students’ learning graphs by changing the corresponding treatments and then exploit the counterfactual outcomes in a contrastive learning framework. We conduct extensive experiments on three real-world datasets, and the experimental results demonstrate the superiority of our proposed Graph CA method compared with several state-of-the-art baselines.
基金National College Students’Training Programs of Innovation and Entrepreneurship,Grant/Award Number:S202210022060the CACMS Innovation Fund,Grant/Award Number:CI2021A00512the National Nature Science Foundation of China under Grant,Grant/Award Number:62206021。
文摘Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features.
文摘A method of knowledge representation and learning based on fuzzy Petri nets was designed. In this way the parameters of weights, threshold value and certainty factor in knowledge model can be adjusted dynamically. The advantages of knowledge representation based on production rules and neural networks were integrated into this method. Just as production knowledge representation, this method has clear structure and specific parameters meaning. In addition, it has learning and parallel reasoning ability as neural networks knowledge representation does. The result of simulation shows that the learning algorithm can converge, and the parameters of weights, threshold value and certainty factor can reach the ideal level after training.
基金supported by the National Science Foundation of China Grant No.61762092“Dynamic multi-objective requirement optimization based on transfer learning”,No.61762089+2 种基金“The key research of high order tensor decomposition in distributed environment”the Open Foundation of the Key Laboratory in Software Engineering of Yunnan Province,Grant No.2017SE204,”Research on extracting software feature models using transfer learning”.
文摘In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS model.KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm,then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning,then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning.Finally,through the full connection layer and sigmoid function to get the prediction ratings,and the items are sorted according to the prediction ratings to get the user’s recommendation list.KGRS is tested on the movielens-100k dataset.Compared with the related representative algorithm,including the state-of-the-art interpretable recommendation models RKGE and RippleNet,the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy.
基金supported by the National Natural Science Foundation of China under grants U19B2044National Key Research and Development Program of China(2021YFC3300500).
文摘Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen.
文摘This paper outlines the necessity of the knowledge representation for the geometrical shapes (KRGS). We advocate that KRGS for being powerful must contain at least three major components, namely (1) fuzzy logic scheme; (2) the machine learning technique; and (3) an integrated algebraic and logical reasoning. After arguing the need for using fuzzy expressions in spatial reasoning, then inducing the spatial graph generalized and maximal common part of the expressions is discussed. Finally, the integration of approximate references into spatial reasoning using absolute measurements is outlined. The integration here means that the satisfiability of a fuzzy spatial expression is conducted by both logical and algebraic reasoning.
文摘With this work, we introduce a novel method for the unsupervised learning of conceptual hierarchies, or concept maps as they are sometimes called, which is aimed specifically for use with literary texts, as such distinguishing itself from the majority of research literature on the topic which is primarily focused on building ontologies from a vast array of different types of data sources, both structured and unstructured, to support various forms of AI, in particular, the Semantic Web as envisioned by Tim Berners-Lee. We first elaborate on mutually informing disciplines of philosophy and computer science, or more specifically the relationship between metaphysics, epistemology, ontology, computing and AI, followed by a technically in-depth discussion of DEBRA, our dependency tree based concept hierarchy constructor, which as its name alludes to, constructs a conceptual map in the form of a directed graph which illustrates the concepts, their respective relations, and the implied ontological structure of the concepts as encoded in the text, decoded with standard Python NLP libraries such as spaCy and NLTK. With this work we hope to both augment the Knowledge Representation literature with opportunities for intellectual advancement in AI with more intuitive, less analytical, and well-known forms of knowledge representation from the cognitive science community, as well as open up new areas of research between Computer Science and the Humanities with respect to the application of the latest in NLP tools and techniques upon literature of cultural significance, shedding light on existing methods of computation with respect to documents in semantic space that effectively allows for, at the very least, the comparison and evolution of texts through time, using vector space math.