Rheological properties of large particulate-liquid model food systems were studied by using the BMS (ball measuring system). The model food systems were composed of alginate gel particles (-10mm) and a gelatinised...Rheological properties of large particulate-liquid model food systems were studied by using the BMS (ball measuring system). The model food systems were composed of alginate gel particles (-10mm) and a gelatinised starch solution with 1% w/w sodium chloride as a liquid phase. The effects of particle phase volume (Ф, 0-0.60), particle shapes (cube, sphere, rod and disc) and starch concentrations (3% and 5% w/w starch) were investigated. The power law model was successfully applied to characterize the flow properties of each system and the consistency K and power law index n were obtained. The K increased and n decreased with increasing # for samples at all particle shapes at 3% w/w starch in the liquid phase. The particle effect on the viscosity is further analysed by means of the Krieger-Dougherty model and the maximum packing fraction #,, and the intrinsic viscosity [η] were obtained in each system. The Фm, depended on the particle shape, as expected. The [7] value depended on particle shape and was largely in the order of 4.04 (cube), 3.28 (disc), 2.56 (sphere) and 2.32 (rod) at 3% w/w starch. The [η] also depended on starch concentration and was 1.1 at 5%,6 w/w starch in the liquid phase with spherical particles. The present results show successful application of BMS to study the rheological properties of large particulate liquid food systems at relatively small scale experiment (-0.5 L) and also that existing models for suspension rheology are applicable for such food systems to a great extend.展开更多
文摘Rheological properties of large particulate-liquid model food systems were studied by using the BMS (ball measuring system). The model food systems were composed of alginate gel particles (-10mm) and a gelatinised starch solution with 1% w/w sodium chloride as a liquid phase. The effects of particle phase volume (Ф, 0-0.60), particle shapes (cube, sphere, rod and disc) and starch concentrations (3% and 5% w/w starch) were investigated. The power law model was successfully applied to characterize the flow properties of each system and the consistency K and power law index n were obtained. The K increased and n decreased with increasing # for samples at all particle shapes at 3% w/w starch in the liquid phase. The particle effect on the viscosity is further analysed by means of the Krieger-Dougherty model and the maximum packing fraction #,, and the intrinsic viscosity [η] were obtained in each system. The Фm, depended on the particle shape, as expected. The [7] value depended on particle shape and was largely in the order of 4.04 (cube), 3.28 (disc), 2.56 (sphere) and 2.32 (rod) at 3% w/w starch. The [η] also depended on starch concentration and was 1.1 at 5%,6 w/w starch in the liquid phase with spherical particles. The present results show successful application of BMS to study the rheological properties of large particulate liquid food systems at relatively small scale experiment (-0.5 L) and also that existing models for suspension rheology are applicable for such food systems to a great extend.