Objective To investigate the impact of 1, 25-(OH)2D3 on left ventricular hypertrophy(LVH) in type 2 diabetic rats. Methods Type 2 diabetic mellitus(DM) model rats were established by intraperitoneally injecting with 3...Objective To investigate the impact of 1, 25-(OH)2D3 on left ventricular hypertrophy(LVH) in type 2 diabetic rats. Methods Type 2 diabetic mellitus(DM) model rats were established by intraperitoneally injecting with 30 mg/kg streptozotocin. After 8 weeks, 19 male rats were identified as diabetic with left ventricular hypertrophy(LVH) by ultrasound examination, and randomly assigned into three groups: untreated(DM-LVH, n=7), treated with insulin(DM-LVH+INS, n=6), and treated with 1, 25-(OH)2D3(DM-LVH+VD, n=6). Healthy male rats were used as the controls group(n=6). The fasting blood glucose and the insulin level were determined weekly. The left ventricular mass index, myocardial collagen content, collagen volume fraction, and 1, 25-(OH)2D3-receptor level were determined by 4 weeks later. Results In the DM-LVH model group, the insulin level was significantly decreased compared with the non-diabetic control group(P<0.05), whereas the blood glucose, left ventricular mass index, myocardial collagen content, collagen volume fraction, and 1, 25-(OH)2D3-receptor expression were significantly increased(all P<0.05). In the DM-LVH+INS and DM-LVH+VD groups, the insulin levels were significantly increased compared with the DM-LVH model group(P<0.05), whereas the other parameters were significantly decreased(all P<0.05). Conclusion 1, 25-(OH)2D3 could reverse LVH in diabetic rats and that the mechanism may involve stimulating insulin secretion and reducing blood glucose via direct up-regulation of 1, 25-(OH)2D3-receptor expression.展开更多
Objective: To investigate the correlation between 25 hydroxyvitamin D3[25(OH)D3] and carotid atherosclerosis of newly diagnosed type 2 diabetes mellitus (T2DM). Methods: A total of 258 patients with newly diagnosed T2...Objective: To investigate the correlation between 25 hydroxyvitamin D3[25(OH)D3] and carotid atherosclerosis of newly diagnosed type 2 diabetes mellitus (T2DM). Methods: A total of 258 patients with newly diagnosed T2DM in this hospital between July 2015 and July 2017 were selected as T2DM group, and 100 subjects with normal glucose metabolism who received physical examination in this hospital during the same period were selected as normal control group. The differences in serum 25(OH)D3 levels, ultrasonic carotid atherosclerosis parameters as well as serum lipid metabolism index and inflammatory adipocytokines contents were compared between the two groups. Pearson test was used to assess the correlation between serum 25(OH)D3 level and carotid atherosclerosis in patients with newly diagnosed T2DM. Results: Serum 25(OH)D3 content of T2DM group was lower than that of normal control group;PWV and CC levels of the ultrasonic left and right carotid arteries were higher than those of normal control group;serum lipid metabolism indexes TC and LDL-C contents were higher than those of normal control group whereas HDL-C content was lower than that of normal control group;serum inflammatory cytokine APN content was lower than that of normal control group whereas CHEM, RSTN and LEP contents were higher than those of normal control group. Pearson test showed that serum 25(OH)D3 level in T2DM patients was directly correlated with the degree of carotid atherosclerosis. Conclusion: Serum 25(OH)D3 level is abnormally low in patients with newly diagnosed T2DM, and the specific decrease is directly correlated with the degree of carotid atherosclerosis and can be used as an early evaluation indicator for carotid artery disease in patients with T2DM.展开更多
Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by...Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.展开更多
基金Supported by the Research Fund for Public Health of the Health and Family Planning Commission of Wuhan Municipality(WG13B12)
文摘Objective To investigate the impact of 1, 25-(OH)2D3 on left ventricular hypertrophy(LVH) in type 2 diabetic rats. Methods Type 2 diabetic mellitus(DM) model rats were established by intraperitoneally injecting with 30 mg/kg streptozotocin. After 8 weeks, 19 male rats were identified as diabetic with left ventricular hypertrophy(LVH) by ultrasound examination, and randomly assigned into three groups: untreated(DM-LVH, n=7), treated with insulin(DM-LVH+INS, n=6), and treated with 1, 25-(OH)2D3(DM-LVH+VD, n=6). Healthy male rats were used as the controls group(n=6). The fasting blood glucose and the insulin level were determined weekly. The left ventricular mass index, myocardial collagen content, collagen volume fraction, and 1, 25-(OH)2D3-receptor level were determined by 4 weeks later. Results In the DM-LVH model group, the insulin level was significantly decreased compared with the non-diabetic control group(P<0.05), whereas the blood glucose, left ventricular mass index, myocardial collagen content, collagen volume fraction, and 1, 25-(OH)2D3-receptor expression were significantly increased(all P<0.05). In the DM-LVH+INS and DM-LVH+VD groups, the insulin levels were significantly increased compared with the DM-LVH model group(P<0.05), whereas the other parameters were significantly decreased(all P<0.05). Conclusion 1, 25-(OH)2D3 could reverse LVH in diabetic rats and that the mechanism may involve stimulating insulin secretion and reducing blood glucose via direct up-regulation of 1, 25-(OH)2D3-receptor expression.
文摘Objective: To investigate the correlation between 25 hydroxyvitamin D3[25(OH)D3] and carotid atherosclerosis of newly diagnosed type 2 diabetes mellitus (T2DM). Methods: A total of 258 patients with newly diagnosed T2DM in this hospital between July 2015 and July 2017 were selected as T2DM group, and 100 subjects with normal glucose metabolism who received physical examination in this hospital during the same period were selected as normal control group. The differences in serum 25(OH)D3 levels, ultrasonic carotid atherosclerosis parameters as well as serum lipid metabolism index and inflammatory adipocytokines contents were compared between the two groups. Pearson test was used to assess the correlation between serum 25(OH)D3 level and carotid atherosclerosis in patients with newly diagnosed T2DM. Results: Serum 25(OH)D3 content of T2DM group was lower than that of normal control group;PWV and CC levels of the ultrasonic left and right carotid arteries were higher than those of normal control group;serum lipid metabolism indexes TC and LDL-C contents were higher than those of normal control group whereas HDL-C content was lower than that of normal control group;serum inflammatory cytokine APN content was lower than that of normal control group whereas CHEM, RSTN and LEP contents were higher than those of normal control group. Pearson test showed that serum 25(OH)D3 level in T2DM patients was directly correlated with the degree of carotid atherosclerosis. Conclusion: Serum 25(OH)D3 level is abnormally low in patients with newly diagnosed T2DM, and the specific decrease is directly correlated with the degree of carotid atherosclerosis and can be used as an early evaluation indicator for carotid artery disease in patients with T2DM.
基金supported by the National Natural Science Foundation of China(52072118,51772089)the Youth 1000 Talent Program of China+3 种基金the Research and Development Plan of Key Areas in Hunan Province(2019GK2235)the Key Research and Development Program of Ningxia(2020BDE03007)the China Postdoctoral Science Foundation(2019M653649)the Guangdong Basic and Applied Basic Research Fund(2019A1515110518,2019A1515111188,2020B0909030004)。
文摘Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.