The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
Aiming at tracking control of a class of innovative control effector(ICE) aircraft with distributed arrays of actuators, this paper proposes a control allocation scheme based on the Lévy flight.Different from the...Aiming at tracking control of a class of innovative control effector(ICE) aircraft with distributed arrays of actuators, this paper proposes a control allocation scheme based on the Lévy flight.Different from the conventional aircraft control allocation problem,the particular characteristic of actuators makes the actuator control command totally subject to integer constraints. In order to tackle this problem, first, the control allocation problem is described as an integer programming problem with two desired objectives. Then considering the requirement of real-time, a metaheuristic algorithm based on the Lévy flight is introduced to tackling this problem. In order to improve the searching efficiency, several targeted and heuristic strategies including variable step length and inherited population initialization according to feedback and so on are designed. Moreover, to prevent the incertitude of the metaheuristic algorithm and ensure the flight stability, a guaranteed control strategy is designed. Finally, a time-varying simulation model is introduced to verifying the effectiveness of the proposed scheme. The contrastive simulation results indicate that the proposed scheme achieves superior tracking performance with appropriate actuator dynamics and computational time, and the improvements for efficiency are active and the parameter settings are reasonable.展开更多
The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective ...The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective problem,current methods tend to treat feature selection as a single-objective optimization task.This paper presents enhanced multi-objective grey wolf optimizer with Lévy flight and mutation phase(LMuMOGWO)for tackling feature selection problems.The proposed approach integrates two effective operators into the existing Multi-objective Grey Wolf optimizer(MOGWO):a Lévy flight and a mutation operator.The Lévy flight,a type of random walk with jump size determined by the Lévy distribution,enhances the global search capability of MOGWO,with the objective of maximizing classification accuracy while minimizing the number of selected features.The mutation operator is integrated to add more informative features that can assist in enhancing classification accuracy.As feature selection is a binary problem,the continuous search space is converted into a binary space using the sigmoid function.To evaluate the classification performance of the selected feature subset,the proposed approach employs a wrapper-based Artificial Neural Network(ANN).The effectiveness of the LMuMOGWO is validated on 12 conventional UCI benchmark datasets and compared with two existing variants of MOGWO,BMOGWO-S(based sigmoid),BMOGWO-V(based tanh)as well as Non-dominated Sorting Genetic Algorithm II(NSGA-II)and Multi-objective Particle Swarm Optimization(BMOPSO).The results demonstrate that the proposed LMuMOGWO approach is capable of successfully evolving and improving a set of randomly generated solutions for a given optimization problem.Moreover,the proposed approach outperforms existing approaches in most cases in terms of classification error rate,feature reduction,and computational cost.展开更多
A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from ...A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.展开更多
In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLS...In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems.展开更多
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low...Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low diversity,slow iteration speed,and stagnation in local optimization when dealing with complicated optimization problems.To ameliorate these deficiencies,an improved hybrid GEO called IGEO,combined with Lévy flight,sine cosine algorithm and differential evolution(DE)strategy,is developed in this paper.The Lévy flight strategy is introduced into the initial stage to increase the diversity of the golden eagle population and make the initial population more abundant;meanwhile,the sine-cosine function can enhance the exploration ability of GEO and decrease the possibility of GEO falling into the local optima.Furthermore,the DE strategy is used in the exploration and exploitation stage to improve accuracy and convergence speed of GEO.Finally,the superiority of the presented IGEO are comprehensively verified by comparing GEO and several state-of-the-art algorithms using(1)the CEC 2017 and CEC 2019 benchmark functions and(2)5 real-world engineering problems respectively.The comparison results demonstrate that the proposed IGEO is a powerful and attractive alternative for solving engineering optimization problems.展开更多
The correlated Levy flight is studied analytically in terms of the fractional Fokker-Planck equation and simulated numerically by using the Langevin equation, where the usual white Ltvy noise is generalized to an Orns...The correlated Levy flight is studied analytically in terms of the fractional Fokker-Planck equation and simulated numerically by using the Langevin equation, where the usual white Ltvy noise is generalized to an Ornstein-Uhlenbeck Levy process (OALP) with a correlation time τc. We analyze firstly the stable behavior of OULP. The probability density function of Ltvy flight particle driven by the OULP in a harmonic potential is exactly obtained, which is also a Ltvy-type one with Tc-dependence width; when the particle is bounded by a quartic potential, its stationary distribution has a bimodality shape and becomes noticeable with the increase of τc.展开更多
The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environme...The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environment.However,the original GO algorithm is constrained by two significant limitations:slow convergence and high mem-ory requirements.This restricts its application to large-scale and complex problems.To address these problems,this paper proposes an innovative enhanced growth optimizer(eGO).In contrast to conventional population-based optimization algorithms,the eGO algorithm utilizes a probabilistic model,designated as the virtual population,which is capable of accurately replicating the behavior of actual populations while simultaneously reducing memory consumption.Furthermore,this paper introduces the Lévy flight mechanism,which enhances the diversity and flexibility of the search process,thus further improving the algorithm’s global search capability and convergence speed.To verify the effectiveness of the eGO algorithm,a series of experiments were conducted using the CEC2014 and CEC2017 test sets.The results demonstrate that the eGO algorithm outperforms the original GO algorithm and other compact algorithms regarding memory usage and convergence speed,thus exhibiting powerful optimization capabilities.Finally,the eGO algorithm was applied to image fusion.Through a comparative analysis with the existing PSO and GO algorithms and other compact algorithms,the eGO algorithm demonstrates superior performance in image fusion.展开更多
The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturban...The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturbance and parametric variations, both of which are intrinsic properties of the system that result in undesired control performance. A proportional-derivative control scheme based on nonlinear dynamic inversion is implemented as the baseline controller, and an L_1 adaptive controller is augmented to the baseline controller to attenuate the effects of input disturbance and parametric variations. Simulation results illustrate the effectiveness of the proposed control scheme.展开更多
Particle filter(PF) can solve the problem of state estimation under strong non-linear non-Gaussian noise condition with respect to traditional Kalman filter(KF) and those improved KFs such as extended KF(EKF) and unsc...Particle filter(PF) can solve the problem of state estimation under strong non-linear non-Gaussian noise condition with respect to traditional Kalman filter(KF) and those improved KFs such as extended KF(EKF) and unscented KF(UKF). However, problems such as particle depletion and particle degradation affect the performance of PF. Optimizing the particle set to high likelihood region with intelligent optimization algorithm results in a more reasonable distribution of the sampling particles and more accurate state estimation. In this paper, a novel bird swarm algorithm based PF(BSAPF) is presented. Firstly, different behavior models are established by emulating the predation, flight, vigilance and follower behavior of the birds. Then, the observation information is introduced into the optimization process of the proposal distribution with the design of fitness function. In order to prevent particles from getting premature(being stuck into local optimum) and increase the diversity of particles, Lévy flight is designed to increase the randomness of particle's movement. Finally,the proposed algorithm is applied to estimate the speed of the train under the condition that the measurement noise of the wheel sensor is non-Gaussian distribution. Simulation study and experimental results both show that BSAPF is more accurate and has more effective particle number as compared with PF and UKF, demonstrating the promising performance of the method.展开更多
针对滑坡位移具有高度非线性和复杂性,难以利用传统优化算法结合人工智能方法进行更合理、准确的预测建模的问题,本文提出一种Lévy飞行策略的混沌麻雀优化算法(CLSSA)-变分模态分解(VMD)-支持向量回归(SVR)的滑坡位移预测模型。首...针对滑坡位移具有高度非线性和复杂性,难以利用传统优化算法结合人工智能方法进行更合理、准确的预测建模的问题,本文提出一种Lévy飞行策略的混沌麻雀优化算法(CLSSA)-变分模态分解(VMD)-支持向量回归(SVR)的滑坡位移预测模型。首先利用CLSSA优化VMD分解参数对滑坡位移时间序列进行分解,其次采用CLSSA-SVR模型对VMD分解子序列进行预测,最后通过叠加子序列预测数据求出累计位移预测。以白水河滑坡为例,对该模型进行验证,实验结果表明,所提方法在最终累计位移预测结果中MAE为2.24 mm, RMSE为3.37 mm, R^(2)为0.995,相对于麻雀优化算法-变分模态分解-支持向量回归(SSA-VMD-SVR),所改进的优化算法增加了VMD的自适应能力,提高滑坡位移各分量预测效率。展开更多
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘Aiming at tracking control of a class of innovative control effector(ICE) aircraft with distributed arrays of actuators, this paper proposes a control allocation scheme based on the Lévy flight.Different from the conventional aircraft control allocation problem,the particular characteristic of actuators makes the actuator control command totally subject to integer constraints. In order to tackle this problem, first, the control allocation problem is described as an integer programming problem with two desired objectives. Then considering the requirement of real-time, a metaheuristic algorithm based on the Lévy flight is introduced to tackling this problem. In order to improve the searching efficiency, several targeted and heuristic strategies including variable step length and inherited population initialization according to feedback and so on are designed. Moreover, to prevent the incertitude of the metaheuristic algorithm and ensure the flight stability, a guaranteed control strategy is designed. Finally, a time-varying simulation model is introduced to verifying the effectiveness of the proposed scheme. The contrastive simulation results indicate that the proposed scheme achieves superior tracking performance with appropriate actuator dynamics and computational time, and the improvements for efficiency are active and the parameter settings are reasonable.
基金supported by Universiti Teknologi PETRONAS,under the Yayasan Universiti Teknologi PETRONAS (YUTP)Fundamental Research Grant Scheme (YUTPFRG/015LC0-274)support by Researchers Supporting Project Number (RSP-2023/309),King Saud University,Riyadh,Saudi Arabia.
文摘The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective problem,current methods tend to treat feature selection as a single-objective optimization task.This paper presents enhanced multi-objective grey wolf optimizer with Lévy flight and mutation phase(LMuMOGWO)for tackling feature selection problems.The proposed approach integrates two effective operators into the existing Multi-objective Grey Wolf optimizer(MOGWO):a Lévy flight and a mutation operator.The Lévy flight,a type of random walk with jump size determined by the Lévy distribution,enhances the global search capability of MOGWO,with the objective of maximizing classification accuracy while minimizing the number of selected features.The mutation operator is integrated to add more informative features that can assist in enhancing classification accuracy.As feature selection is a binary problem,the continuous search space is converted into a binary space using the sigmoid function.To evaluate the classification performance of the selected feature subset,the proposed approach employs a wrapper-based Artificial Neural Network(ANN).The effectiveness of the LMuMOGWO is validated on 12 conventional UCI benchmark datasets and compared with two existing variants of MOGWO,BMOGWO-S(based sigmoid),BMOGWO-V(based tanh)as well as Non-dominated Sorting Genetic Algorithm II(NSGA-II)and Multi-objective Particle Swarm Optimization(BMOPSO).The results demonstrate that the proposed LMuMOGWO approach is capable of successfully evolving and improving a set of randomly generated solutions for a given optimization problem.Moreover,the proposed approach outperforms existing approaches in most cases in terms of classification error rate,feature reduction,and computational cost.
文摘A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.
基金National Natural Science Foundation of China,Grant No.52375264.
文摘In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems.
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
基金National Natural Science Foundation of China(Grant No.51875454).
文摘Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low diversity,slow iteration speed,and stagnation in local optimization when dealing with complicated optimization problems.To ameliorate these deficiencies,an improved hybrid GEO called IGEO,combined with Lévy flight,sine cosine algorithm and differential evolution(DE)strategy,is developed in this paper.The Lévy flight strategy is introduced into the initial stage to increase the diversity of the golden eagle population and make the initial population more abundant;meanwhile,the sine-cosine function can enhance the exploration ability of GEO and decrease the possibility of GEO falling into the local optima.Furthermore,the DE strategy is used in the exploration and exploitation stage to improve accuracy and convergence speed of GEO.Finally,the superiority of the presented IGEO are comprehensively verified by comparing GEO and several state-of-the-art algorithms using(1)the CEC 2017 and CEC 2019 benchmark functions and(2)5 real-world engineering problems respectively.The comparison results demonstrate that the proposed IGEO is a powerful and attractive alternative for solving engineering optimization problems.
基金supported by the National Natural Science Foundation of China(Grant Nos.61178067,10875013 and 11175021)the Doctoral Scientific Research Starting Foundation of Taiyuan University of Science and Technology(Grant No.20122042)
文摘The correlated Levy flight is studied analytically in terms of the fractional Fokker-Planck equation and simulated numerically by using the Langevin equation, where the usual white Ltvy noise is generalized to an Ornstein-Uhlenbeck Levy process (OALP) with a correlation time τc. We analyze firstly the stable behavior of OULP. The probability density function of Ltvy flight particle driven by the OULP in a harmonic potential is exactly obtained, which is also a Ltvy-type one with Tc-dependence width; when the particle is bounded by a quartic potential, its stationary distribution has a bimodality shape and becomes noticeable with the increase of τc.
文摘The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environment.However,the original GO algorithm is constrained by two significant limitations:slow convergence and high mem-ory requirements.This restricts its application to large-scale and complex problems.To address these problems,this paper proposes an innovative enhanced growth optimizer(eGO).In contrast to conventional population-based optimization algorithms,the eGO algorithm utilizes a probabilistic model,designated as the virtual population,which is capable of accurately replicating the behavior of actual populations while simultaneously reducing memory consumption.Furthermore,this paper introduces the Lévy flight mechanism,which enhances the diversity and flexibility of the search process,thus further improving the algorithm’s global search capability and convergence speed.To verify the effectiveness of the eGO algorithm,a series of experiments were conducted using the CEC2014 and CEC2017 test sets.The results demonstrate that the eGO algorithm outperforms the original GO algorithm and other compact algorithms regarding memory usage and convergence speed,thus exhibiting powerful optimization capabilities.Finally,the eGO algorithm was applied to image fusion.Through a comparative analysis with the existing PSO and GO algorithms and other compact algorithms,the eGO algorithm demonstrates superior performance in image fusion.
文摘The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturbance and parametric variations, both of which are intrinsic properties of the system that result in undesired control performance. A proportional-derivative control scheme based on nonlinear dynamic inversion is implemented as the baseline controller, and an L_1 adaptive controller is augmented to the baseline controller to attenuate the effects of input disturbance and parametric variations. Simulation results illustrate the effectiveness of the proposed control scheme.
文摘Particle filter(PF) can solve the problem of state estimation under strong non-linear non-Gaussian noise condition with respect to traditional Kalman filter(KF) and those improved KFs such as extended KF(EKF) and unscented KF(UKF). However, problems such as particle depletion and particle degradation affect the performance of PF. Optimizing the particle set to high likelihood region with intelligent optimization algorithm results in a more reasonable distribution of the sampling particles and more accurate state estimation. In this paper, a novel bird swarm algorithm based PF(BSAPF) is presented. Firstly, different behavior models are established by emulating the predation, flight, vigilance and follower behavior of the birds. Then, the observation information is introduced into the optimization process of the proposal distribution with the design of fitness function. In order to prevent particles from getting premature(being stuck into local optimum) and increase the diversity of particles, Lévy flight is designed to increase the randomness of particle's movement. Finally,the proposed algorithm is applied to estimate the speed of the train under the condition that the measurement noise of the wheel sensor is non-Gaussian distribution. Simulation study and experimental results both show that BSAPF is more accurate and has more effective particle number as compared with PF and UKF, demonstrating the promising performance of the method.
文摘针对滑坡位移具有高度非线性和复杂性,难以利用传统优化算法结合人工智能方法进行更合理、准确的预测建模的问题,本文提出一种Lévy飞行策略的混沌麻雀优化算法(CLSSA)-变分模态分解(VMD)-支持向量回归(SVR)的滑坡位移预测模型。首先利用CLSSA优化VMD分解参数对滑坡位移时间序列进行分解,其次采用CLSSA-SVR模型对VMD分解子序列进行预测,最后通过叠加子序列预测数据求出累计位移预测。以白水河滑坡为例,对该模型进行验证,实验结果表明,所提方法在最终累计位移预测结果中MAE为2.24 mm, RMSE为3.37 mm, R^(2)为0.995,相对于麻雀优化算法-变分模态分解-支持向量回归(SSA-VMD-SVR),所改进的优化算法增加了VMD的自适应能力,提高滑坡位移各分量预测效率。