期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Au Nanoparticle Formation from Amorphous Au/Si Multilayer
1
作者 Masami Aono Takashi Ueda +2 位作者 Hiroshi Abe Shintaro Kobayashi Katsuhiko Inaba 《Journal of Crystallization Process and Technology》 2014年第4期193-205,共13页
By direct observations of transmission electron microscopy (TEM), irreversible morphological transformations of as-deposited amorphous Au/Si multilayer (a-Au/a-Si) were observed on heating. The well arrayed sequence o... By direct observations of transmission electron microscopy (TEM), irreversible morphological transformations of as-deposited amorphous Au/Si multilayer (a-Au/a-Si) were observed on heating. The well arrayed sequence of the multilayer changed to zigzag layered structure at 478 K (=Tzig). Finally, the zigzag structure transformed to Au nanoparticles at 508 K. The distribution of the Au nanoparticles was random within the thin film. In situ X-ray diffraction during heating can clarify partial crystallization Si (c-Si) in the multilayer at 450 K (= ), which corresponds to metal induced crystallization (MIC) from amorphous Si (a-Si) accompanying by Au diffusion. On further heating, a-Au started to crystallize at around 480 K (=Tc) and gradually grew up to 3.2 nm in radius, although the volume of c-Si was almost constant. Continuous heating caused crystal Au (c-Au) melting into liquid AuSi (l-AuSi) at 600 K (= ), which was lower than bulk eutectic temperature ( ). Due to the AuSi eutectic effect, reversible phase transition between liquid and solid occurred once temperature is larger than . Proportionally to the maximum temperatures at each cycles (673, 873 and 1073 K), both and Au crystallization temperature approaches to . Using a thermodynamic theory of the nanoparticle formation in the eutectic system, the relationship between and the nanoparticle size is explained. 展开更多
关键词 AMORPHOUS Au/Si MULTILAYER AU NANOPARTICLE Low EUTECTIC Point Metal Induced Crystallization IRREVERSIBLE Morphological Transformation Reversible l-ausi-c-au NANOPARTICLE Phase Transition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部