期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种新的L_1度量Fisher线性判别分析研究 被引量:8
1
作者 余景丽 胡恩良 张涛 《计算机工程与应用》 CSCD 北大核心 2018年第4期128-134,共7页
Fisher线性判别分析(Fisher Linear Discriminant Analysis,FLDA)是一种典型的监督型特征提取方法,旨在最大化Fisher准则,寻求最优投影矩阵。在标准Fisher准则中,涉及到的度量为L_2范数度量,此度量通常缺乏鲁棒性,对异常值点较敏感。为... Fisher线性判别分析(Fisher Linear Discriminant Analysis,FLDA)是一种典型的监督型特征提取方法,旨在最大化Fisher准则,寻求最优投影矩阵。在标准Fisher准则中,涉及到的度量为L_2范数度量,此度量通常缺乏鲁棒性,对异常值点较敏感。为提高鲁棒性,引入了一种基于L_1范数度量的FLDA及其优化求解算法。实验结果表明:在很多情形下,相比于传统的L_2范数FLDA,L_1范数FLDA具有更好的分类精度和鲁棒性。 展开更多
关键词 FISHER线性判别分析 FISHER准则 l1范数度量 鲁棒性 特征提取
下载PDF
一种鲁棒的半监督图聚类方法
2
作者 程小恩 胡恩良 《云南师范大学学报(自然科学版)》 2021年第3期28-33,共6页
考虑到l1范数度量比l2范数平方度量更鲁棒,基于l1度量提出了一种更鲁棒的半监督图聚类模型,针对该模型中非光滑目标函数不易优化的问题,利用Majorization-Minimization框架提出了一种新的求解算法并证明了其收敛性.实验结果表明,在监督... 考虑到l1范数度量比l2范数平方度量更鲁棒,基于l1度量提出了一种更鲁棒的半监督图聚类模型,针对该模型中非光滑目标函数不易优化的问题,利用Majorization-Minimization框架提出了一种新的求解算法并证明了其收敛性.实验结果表明,在监督信息有噪声或错误时,所提出的模型能提高半监督聚类的鲁棒性和有效性. 展开更多
关键词 半监督图聚类 鲁棒性 l1范数度量 非光滑优化 Majorization-Minimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部