期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A NEURAL-BASED NONLINEAR L_1-NORM OPTIMIZATION ALGORITHM FOR DIAGNOSIS OF NETWORKS* 被引量:8
1
作者 He Yigang (Department of Electrical Engineering, Hunan University, Changsha 410082)Luo Xianjue Qiu Guanyuan(School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049) 《Journal of Electronics(China)》 1998年第4期365-371,共7页
Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault ... Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations. 展开更多
关键词 FAUlT DIAGNOSIS l1-norm NEURAl optimization
下载PDF
非线性l-1模极小化问题的极大熵粒子群算法 被引量:4
2
作者 张建科 《计算机工程与应用》 CSCD 北大核心 2009年第13期62-64,共3页
针对非线性l-1模极小化问题,利用粒子群算法并结合极大熵函数法给出了此类问题的一种新混合算法。该算法首先利用极大熵函数将非线性l-1模极小化问题转化为一个光滑函数的无约束最优化问题,将此光滑函数作为粒子群算法的适应值函数;然... 针对非线性l-1模极小化问题,利用粒子群算法并结合极大熵函数法给出了此类问题的一种新混合算法。该算法首先利用极大熵函数将非线性l-1模极小化问题转化为一个光滑函数的无约束最优化问题,将此光滑函数作为粒子群算法的适应值函数;然后应用粒子群算法来优化此问题。数值结果表明,该算法收敛快、数值稳定性好,是求解非线性l-1模极小化问题的一种有效算法。 展开更多
关键词 粒子群算法 进化算法 l-1模极小化问题 极大熵函数
下载PDF
EQUIVALENCE BETWEEN NONNEGATIVE SOLUTIONS TO PARTIAL SPARSE AND WEIGHTED l_1-NORM MINIMIZATIONS
3
作者 Xiuqin Tian Zhengshan Dong Wenxing Zhu 《Annals of Applied Mathematics》 2016年第4期380-395,共16页
Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different... Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different from other conditions based on the spark property, the mutual coherence, the null space property (NSP) and the restricted isometry property (RIP), the RSP- based conditions are easier to be verified. Moreover, the proposed conditions guarantee not only the strong equivalence, but also the equivalence between the two problems. First, according to the foundation of the strict complemenrarity theorem of linear programming, a sufficient and necessary condition, satisfying the RSP of the sensing matrix and the full column rank property of the corresponding sub-matrix, is presented for the unique nonnegative solution to the weighted l1-norm minimization problem. Then, based on this condition, the equivalence conditions between the two problems are proposed. Finally, this paper shows that the matrix with the RSP of order k can guarantee the strong equivalence of the two problems. 展开更多
关键词 compressed sensing sparse optimization range spae proper-ty equivalent condition l0-norm minimization weighted l1-norm minimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部