期刊文献+
共找到170篇文章
< 1 2 9 >
每页显示 20 50 100
基于重加权L1的ATpV正则化叠前反演方法
1
作者 潘树林 陈耀杰 +2 位作者 尹成 苟其勇 张洞君 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期13-26,共14页
地震叠前反演能够准确获取地下储层介质的各类参数,是油气的勘探与开发中重要技术之一。然而,地震反演是典型的病态问题,为了克服此问题,通常使用正则化约束目标函数,来减轻反演问题的病态性。但是正则化约束忽略了地层边界的振幅信息,... 地震叠前反演能够准确获取地下储层介质的各类参数,是油气的勘探与开发中重要技术之一。然而,地震反演是典型的病态问题,为了克服此问题,通常使用正则化约束目标函数,来减轻反演问题的病态性。但是正则化约束忽略了地层边界的振幅信息,使用重加权方法可以很好地克服这一问题,更好地恢复稀疏性。提出了一种基于重加权L1的ATpV正则化叠前三参数反演方法(ATpV-L1方法),首次将重加权L1方法与ATpV方法结合,并引入到叠前反演中。采用交替方向乘子算法(ADMM)建立反演框架,对目标函数进行分块优化,有效提高了收敛速度。首先,介绍ATpV-L1方法,建立了基于ATpV-L1的叠前反演目标函数;然后,应用理论模拟数据对比新方法和ATpV方法反演结果,验证了方法的效果;最后,使用实际数据进行实验分析,进一步验证了ATpV-L1方法的反演精度及可行性。实验结果表明,提出的ATpV-L1方法可以有效恢复反演结果的稀疏性,提高反演精度。 展开更多
关键词 重加权l1方法 ATpV正则 叠前反演 稀疏约束 交替方向乘子法 误差分析
下载PDF
基于L1范数正则化和最小二乘优化的冲击载荷识别研究 被引量:5
2
作者 陈辉 缪炳荣 +3 位作者 赵浪涛 张盈 蒋钏应 周凤 《噪声与振动控制》 CSCD 北大核心 2023年第1期62-67,99,共7页
为了改善冲击载荷识别问题的病态特性,最大限度提高识别精度,在时域内提出一种基于L1范数正则化和最小二乘优化的改进冲击载荷识别方法。采用L1范数正则化方法构建冲击载荷稀疏反卷积模型,使用截断牛顿内点法求解L1范数的最小二乘优化问... 为了改善冲击载荷识别问题的病态特性,最大限度提高识别精度,在时域内提出一种基于L1范数正则化和最小二乘优化的改进冲击载荷识别方法。采用L1范数正则化方法构建冲击载荷稀疏反卷积模型,使用截断牛顿内点法求解L1范数的最小二乘优化问题,同时根据预条件共轭梯度法确定最优搜索路径和计算方向。最后,考虑不同冲击工况、不同响应位置对识别结果的影响。通过对铝合金板进行冲击载荷识别试验进行验证,发现在铝板受单次冲击和多次冲击工况下所识别载荷与施加的实际载荷吻合良好。结果还表明,与Tikhonov正则化方法相比,该方法能够提高冲击载荷识别的准确性和稳定性。 展开更多
关键词 振动与波 冲击载荷识别 l1范数正则 最小二乘优 TIKHONOV正则 正则参数
下载PDF
L1正则化的深度谱聚类算法 被引量:2
3
作者 李文博 刘波 +2 位作者 陶玲玲 罗棻 张航 《计算机应用》 CSCD 北大核心 2023年第12期3662-3667,共6页
针对深度谱聚类模型训练不稳定和泛化能力弱等问题,提出L1正则化的深度谱聚类算法(DSCLR)。首先,在深度谱聚类的目标函数中引入L1正则化,使深度神经网络模型生成的拉普拉斯矩阵的特征向量稀疏化,并提升模型的泛化能力;其次,通过利用参... 针对深度谱聚类模型训练不稳定和泛化能力弱等问题,提出L1正则化的深度谱聚类算法(DSCLR)。首先,在深度谱聚类的目标函数中引入L1正则化,使深度神经网络模型生成的拉普拉斯矩阵的特征向量稀疏化,并提升模型的泛化能力;其次,通过利用参数化修正线性单元激活函数(PReLU)改进基于深度神经网络的谱聚类算法的网络结构,解决模型训练不稳定和欠拟合问题。在MNIST数据集上的实验结果表明,所提算法在聚类精度(CA)、归一化互信息(NMI)指数和调整兰德系数(ARI)这3个评价指标上,相较于深度谱聚类算法分别提升了11.85、7.75和17.19个百分点。此外,所提算法相较于深度嵌入聚类(DEC)和基于对偶自编码器网络的深度谱聚类(DSCDAN)等算法,在CA、NMI和ARI这3个评价指标上也有大幅提升。 展开更多
关键词 深度聚类 谱聚类 l1正则 深度学习 无监督学习
下载PDF
基于L_(1)范数正则化约束的叠前数据衰减补偿方法 被引量:1
4
作者 程万里 王守东 +2 位作者 孟巾钰 王梓旭 张俊杰 《石油地球物理勘探》 EI CSCD 北大核心 2023年第3期567-579,共13页
由于地下介质的吸收作用,地震波在传播过程中经历了能量衰减、波形畸变及频带变窄的过程,严重降低了地震资料的分辨率。对于叠前地震数据而言,地层吸收衰减效应会随着传播路径发生变化,进而扭曲地震数据的AVA反射曲线特征。为此,提出一... 由于地下介质的吸收作用,地震波在传播过程中经历了能量衰减、波形畸变及频带变窄的过程,严重降低了地震资料的分辨率。对于叠前地震数据而言,地层吸收衰减效应会随着传播路径发生变化,进而扭曲地震数据的AVA反射曲线特征。为此,提出一种针对叠前数据的衰减补偿方法。该方法考虑了射线路径对于衰减补偿的影响,首先在水平层状介质假设下推导出衰减介质中的叠前道集正演公式;然后将衰减补偿简化为一个反问题,并通过L_(1)范数进行正则化约束;最后采用交替方向乘子算法(ADMM)求取最优解,进而实现叠前数据的衰减补偿。数值测试结果表明,所提方法不仅能对振幅和相位进行补偿,而且还能恢复叠前道集的AVA反射特征。通过与叠后补偿、常规叠前反Q滤波方法对比分析,所提方法的精度更高、稳定性及抗噪能力更强。同时,Q值敏感度分析实验说明所提方法对Q值模型不敏感,仅借助低频Q值模型也能保持较高的补偿精度。实际资料处理结果也表明,该方法能够提高叠前道集的分辨率,有效还原数据的AVA反射特征,为高精度叠前地震反演奠定了基础。 展开更多
关键词 衰减补偿 叠前数据 AVA分析 l1范数正则 反演 分辨率
下载PDF
基于L1正则化反演的电压行波高精度检测方法 被引量:1
5
作者 李鑫瑜 邓丰 +2 位作者 张振 蒋素霞 毕岚溪 《电力系统保护与控制》 EI CSCD 北大核心 2023年第22期167-176,共10页
针对电压行波传感器二次侧故障行波信号不能真实反映电网一次行波波形特征的问题,提出了一种基于L1正则化反演的电压行波高精度检测方法。首先,分析了行波传感器的非理想传变特性,揭示了一、二次行波信号的波形差异性。在此基础上,提出... 针对电压行波传感器二次侧故障行波信号不能真实反映电网一次行波波形特征的问题,提出了一种基于L1正则化反演的电压行波高精度检测方法。首先,分析了行波传感器的非理想传变特性,揭示了一、二次行波信号的波形差异性。在此基础上,提出利用小波包变换对观测信号进行多尺度分解,并对各频段信号分别进行反演的方法,从而减小由行波传感器引起的畸变误差。其次,在反演模型中引入L1正则化约束对模型进行稀疏性刻画,使反演结果更能体现真实故障波形特征。最后,利用快速迭代收缩阈值算法(fast iterative shrinkage-thresholding algorithm,FISTA)进行迭代求解,将各分量的反演波形线性叠加,实现故障行波信号的精确还原。仿真和实验结果表明:与直接反演相比,所提方法能够实现故障行波在时域和频域上的高精度真实测量,在微弱故障和噪声环境下也能获得较为精确的反演结果,具有一定的工程应用价值。 展开更多
关键词 高精度检测 波形反演 行波传感器 l1正则 多尺度
下载PDF
基于交叉模型交叉模态方法和L_(1)正则化的损伤识别方法
6
作者 靳帮虎 宋彦朋 邱虎 《机械强度》 CAS CSCD 北大核心 2023年第6期1509-1513,共5页
提出了一种用交叉模型交叉模态(Cross Model Cross Mode,CMCM)方法与L1正则化结合的损伤识别方法。首先介绍了CMCM方法的基本原理,以及L2正则化与L1正则化的特点。然后通过一个实验室的钢框架结构对提出的方法进行了验证。结果表明,CMC... 提出了一种用交叉模型交叉模态(Cross Model Cross Mode,CMCM)方法与L1正则化结合的损伤识别方法。首先介绍了CMCM方法的基本原理,以及L2正则化与L1正则化的特点。然后通过一个实验室的钢框架结构对提出的方法进行了验证。结果表明,CMCM方法与L2正则化结合容易造成非损伤单元的误判,而在CMCM方法中使用L1正则化则能更准确地识别结构的损伤。即使仅用第一阶测量模态,用L1正则化技术求解CMCM方程也能很准确地识别框架结构的损伤。 展开更多
关键词 l1 正则 损伤识别 交叉模型交叉模态 模型修正
下载PDF
L1正则化与pinball损失函数的极限学习机 被引量:3
7
作者 陈聪 《信息技术与信息化》 2023年第3期37-40,共4页
极限学习机(extreme learning machine, ELM)由于其训练速度快、易于实现等优点,在回归领域得到了广泛的应用。然而,传统ELM的平方损失函数在异常值面前放大了异常值的影响,从而降低了性能。为了提高ELM的鲁棒性,在ELM中引入pinball损... 极限学习机(extreme learning machine, ELM)由于其训练速度快、易于实现等优点,在回归领域得到了广泛的应用。然而,传统ELM的平方损失函数在异常值面前放大了异常值的影响,从而降低了性能。为了提高ELM的鲁棒性,在ELM中引入pinball损失函数。pinball损失函数与误差线性相关,与平方损失函数相比,可以减少异常值的影响。此外,L2范数正则化对于隐藏层节点缺乏稀疏性。相比之下,L1范数正则化可以改善模型的稀疏性。为了同时具有鲁棒性和稀疏性,提出了一种基于L1范数正则化和pinball损失函数的ELM模型,通过迭代重加权算法求解相应的优化问题。为了验证模型的鲁棒性和稀疏性,在6个真实数据集上进行实验。实验结果表明,提出的L1-PELM优于其他方法。特别是对于异常值比率较大的数据,L1-PELM不仅对异常值不敏感,而且保持了稀疏性。 展开更多
关键词 极限学习机 l1正则 pinball损失函数 迭代重加权 鲁棒性 稀疏性
下载PDF
稀疏反褶积正则化策略优选:数学模型构建与性能评估
8
作者 崔志伟 《理论数学》 2024年第10期261-272,共12页
在地震资料反演中,反褶积是一种重要的压缩地震子波、提高薄层纵向分辨率的地震数据处理方法。由于地层为层状结构,反射系数可视作稀疏的脉冲序列,因此地震反褶积可以描述为稀疏求解问题。然而,反褶积问题通常是病态的,需要引入正则化... 在地震资料反演中,反褶积是一种重要的压缩地震子波、提高薄层纵向分辨率的地震数据处理方法。由于地层为层状结构,反射系数可视作稀疏的脉冲序列,因此地震反褶积可以描述为稀疏求解问题。然而,反褶积问题通常是病态的,需要引入正则化约束以获得稳定和准确的解。本研究介绍了几种不同的正则化方法,包括L1正则化、L2正则化、Cauchy正则化以及结合L1和L2正则化的方法,给出了它们的数学模型,并着重比较了Cauchy正则化与结合L1和L2正则化的方法。通过简单的一维模型和复杂的Marmousi2 (二维)模型的实验,我们评估了这些正则化方法在稀疏脉冲反褶积中的性能表现。结果表明,结合L1和L2正则化的联合方法在噪声抑制和分辨率提升方面表现优异,能够更准确地恢复地下结构的真实反射特性。本文的研究为选择适当的正则化策略以优化地震数据的反褶积处理提供了理论支持和实用指导。In seismic data inversion, deconvolution is an important seismic data processing method that compresses seismic wavelets and improves the vertical resolution of thin layers. Due to the layered structure of the strata, the reflection coefficient can be regarded as a sparse pulse sequence, so seismic deconvolution can be described as a sparse solution problem. However, deconvolution problems are often pathological and require the introduction of regularization constraints to obtain stable and accurate solutions. This study introduces several different regularization methods, including L1 regularization, L2 regularization, Cauchy regularization, and methods combining L1 and L2 regularization. Their mathematical models are given, and the comparison between Cauchy regularization and methods combining L1 and L2 regularization is emphasized. We evaluated the performance of these regularization methods in sparse pulse deconvolution through experiments using a simple one-dimensional model and a complex Marmousi2 (two-dimensional) model. The results show that the joint method combining L1 and L2 regularization performs well in noise suppression and resolution improvement, and can more accurately restore the true reflection characteristics of underground structures. This study provides theoretical support and practical guidance for selecting appropriate regularization strategies to optimize the deconvolution processing of seismic data. 展开更多
关键词 地震反演 稀疏性 正则因子 Cauchy正则 l1/2正则 反射系数
下载PDF
基于加权L_1正则化的水下图像清晰化算法 被引量:11
9
作者 杨爱萍 张莉云 +1 位作者 曲畅 王建 《电子与信息学报》 EI CSCD 北大核心 2017年第3期626-633,共8页
水体对光能量有较强的吸收和散射作用,造成水下图像颜色失真,对比度下降。传统的图像增强方法和复原方法处理水下图像时各有不足,该文结合水下成像物理模型和基于Retinex理论的图像增强算法,提出水下图像清晰化方案。首先,基于图像统计... 水体对光能量有较强的吸收和散射作用,造成水下图像颜色失真,对比度下降。传统的图像增强方法和复原方法处理水下图像时各有不足,该文结合水下成像物理模型和基于Retinex理论的图像增强算法,提出水下图像清晰化方案。首先,基于图像统计特性给出一种简单的颜色校正方法,以去除颜色失真;在水下图像成像理论框架下,利用边界约束求得初始透射率,再使用自适应维纳滤波进行优化;在此基础上,提出加权L_1正则化模型对亮度层进行增强,最后再进行自适应Gamma校正。实验结果表明,算法可以有效去除颜色失真,而且能够大幅提升图像的对比度和清晰度。 展开更多
关键词 图像处理 颜色校正 透射率 加权l1正则 自适应Gamma校正
下载PDF
L1正则化机器学习问题求解分析 被引量:13
10
作者 孔康 汪群山 梁万路 《计算机工程》 CAS CSCD 北大核心 2011年第17期175-177,共3页
以稀疏学习为主线,从多阶段、多步骤优化思想的角度出发,对当前流行的L1正则化求解算法进行分类,比较基于次梯度的多步骤方法、基于坐标优化的多阶段方法,以及软L1正则化方法的收敛性能、时空复杂度和解的稀疏程度。分析表明,基于机器... 以稀疏学习为主线,从多阶段、多步骤优化思想的角度出发,对当前流行的L1正则化求解算法进行分类,比较基于次梯度的多步骤方法、基于坐标优化的多阶段方法,以及软L1正则化方法的收敛性能、时空复杂度和解的稀疏程度。分析表明,基于机器学习问题特殊结构的学习算法可以获得较好的稀疏性和较快的收敛速度。 展开更多
关键词 l1正则 机器学习 稀疏性 多阶段 多步骤
下载PDF
基于次梯度的L1正则化Hinge损失问题求解研究 被引量:4
11
作者 孔康 陶卿 +1 位作者 汪群山 储德军 《计算机研究与发展》 EI CSCD 北大核心 2012年第7期1494-1499,共6页
Hinge损失函数是支持向量机(support vector machines,SVM)成功的关键,L1正则化在稀疏学习的研究中起关键作用.鉴于两者均是不可导函数,高阶梯度信息无法使用.利用随机次梯度方法系统研究L1正则化项的Hinge损失大规模数据问题求解.首先... Hinge损失函数是支持向量机(support vector machines,SVM)成功的关键,L1正则化在稀疏学习的研究中起关键作用.鉴于两者均是不可导函数,高阶梯度信息无法使用.利用随机次梯度方法系统研究L1正则化项的Hinge损失大规模数据问题求解.首先描述了直接次梯度方法和投影次梯度方法的随机算法形式,并对算法的收敛性和收敛速度进行了理论分析.大规模真实数据集上的实验表明,投影次梯度方法对于处理大规模稀疏数据具有更快的收敛速度和更好的稀疏性.实验进一步阐明了投影阈值对算法稀疏度的影响. 展开更多
关键词 l1正则 Hinge损失 稀疏性 大规模数据 机器学习
下载PDF
L1+L2正则化逻辑斯蒂模型分类算法 被引量:4
12
作者 刘建伟 付捷 罗雄麟 《计算机工程》 CAS CSCD 2012年第13期148-151,共4页
提出一种L1+L2范数正则化逻辑斯蒂模型分类算法。该算法引入L2范数正则化,解决L1正则化逻辑斯蒂算法迭代过程奇异问题,通过引入样本向量的扩展和新的权值向量完成L1范数非平滑问题,最终使用共轭梯度方法求解经过转化的最优化问题。在各... 提出一种L1+L2范数正则化逻辑斯蒂模型分类算法。该算法引入L2范数正则化,解决L1正则化逻辑斯蒂算法迭代过程奇异问题,通过引入样本向量的扩展和新的权值向量完成L1范数非平滑问题,最终使用共轭梯度方法求解经过转化的最优化问题。在各种实际数据集上的实验结果表明,该算法优于L2范数、L1范数和Lp范数正则化逻辑斯蒂模型,具有较好的特征选择和分类性能。 展开更多
关键词 l1范数 l2范数 共轭梯度 特征选择 正则 逻辑斯蒂模型
下载PDF
L1范数正则化SVM聚类算法 被引量:3
13
作者 刘建伟 李双成 +1 位作者 付捷 罗雄麟 《计算机工程》 CAS CSCD 2012年第12期185-187,共3页
提出L1范数正则化支持向量机(SVM)聚类算法。该算法能够同时实现聚类和特征选择功能。给出L1范数正则化SVM聚类原问题和对偶问题形式,采用类似迭代坐标下降的方法求解困难的混合整数规划问题。在多组数据集上的实验结果表明,L1范数正则... 提出L1范数正则化支持向量机(SVM)聚类算法。该算法能够同时实现聚类和特征选择功能。给出L1范数正则化SVM聚类原问题和对偶问题形式,采用类似迭代坐标下降的方法求解困难的混合整数规划问题。在多组数据集上的实验结果表明,L1范数正则化SVM聚类算法聚类准确率与L2范数正则化SVM聚类算法相近,而且能够实现特征选择。 展开更多
关键词 支持向量机 l1范数 正则 特征选择 聚类 对偶问题
下载PDF
一种单脉冲雷达多通道L1正则化波束锐化方法 被引量:4
14
作者 唐琳 焦淑红 +1 位作者 齐欢 吴如煊 《电子与信息学报》 EI CSCD 北大核心 2014年第9期2201-2206,共6页
该文针对单脉冲雷达波束锐化问题,提出一种多通道L1正则化波束锐化方法。首先根据最大后验概率准则推导了适合于单脉冲雷达波束锐化的多通道L1正则化模型,然后提出一种扩展的迭代收缩阈值算法来解决多通道L1正则化问题。理论分析和仿真... 该文针对单脉冲雷达波束锐化问题,提出一种多通道L1正则化波束锐化方法。首先根据最大后验概率准则推导了适合于单脉冲雷达波束锐化的多通道L1正则化模型,然后提出一种扩展的迭代收缩阈值算法来解决多通道L1正则化问题。理论分析和仿真实验表明,该方法在保证波束锐化性能的同时提高了抑制噪声的能力,有效地解决了单脉冲雷达中各通道方向图不满足强互质条件带来的噪声泄漏问题。其性能要明显优于现有的单脉冲雷达波束锐化方法。 展开更多
关键词 单脉冲雷达 前视成像 波束锐 反解卷积 l1正则
下载PDF
L1正则化Logistic回归在财务预警中的应用 被引量:10
15
作者 刘遵雄 郑淑娟 +1 位作者 秦宾 张恒 《经济数学》 2012年第2期106-110,共5页
线性模型和广义线性模型已广泛地用于社会经济、生产实践和科学研究中的数据分析和数据挖掘等领域,如公司财务预警,引入L1范数惩罚技术的模型在估计模型系数的同时能实现变量选择的功能.本文将L1范数正则化Logistic回归模型用于上市公... 线性模型和广义线性模型已广泛地用于社会经济、生产实践和科学研究中的数据分析和数据挖掘等领域,如公司财务预警,引入L1范数惩罚技术的模型在估计模型系数的同时能实现变量选择的功能.本文将L1范数正则化Logistic回归模型用于上市公司财务危机预报,结合沪深股市制造业ST公司和正常公司的T-2年财务数据开展实证研究,对比Logistic回归和L2正则化Logistic回归模型进行对比分析.实验结果表明L1正则化Logistic回归模型的有效性,其在保证模型预测精度的同时提高模型的解释性. 展开更多
关键词 财务预警 l1范数惩罚 正则技术 逻辑回归
下载PDF
基于L1正则化的地震谱反演方法 被引量:4
16
作者 符伟 刘财 《世界地质》 CAS 2015年第2期505-510,共6页
将L1正则化方法应用到地震谱反演的实现中,验证了谱反演方法在拓宽频谱宽度、提高分辨率上的可行性。对谱反演中L1正则化解的稀疏性和应用矩形窗造成结果不稳定的现象做了详细讨论,提出自动选择窗口长度进行谱反演的算法模式,并基于该... 将L1正则化方法应用到地震谱反演的实现中,验证了谱反演方法在拓宽频谱宽度、提高分辨率上的可行性。对谱反演中L1正则化解的稀疏性和应用矩形窗造成结果不稳定的现象做了详细讨论,提出自动选择窗口长度进行谱反演的算法模式,并基于该模式对地震模型进行了试算。该方法有效地拓宽了数据的频谱宽度,提高了反射地震勘探的精度,为薄层的识别和更加复杂的地震勘探提供了一种新的思路。 展开更多
关键词 谱反演 窗函数 分辨率 l1正则
下载PDF
基于l_1与l_0正则化的压缩感知数值算法 被引量:2
17
作者 李订芳 江磊 《江西师范大学学报(自然科学版)》 CAS 北大核心 2015年第3期281-285,共5页
针对压缩感知模型,讨论了基于l0正则化的正交匹配追踪算法(OMP)与基于l1正则化的同伦算法(HM)和迭代加权最小二乘法(IRLS).通过数值实验结果分析,验证了3种算法的有效性,且相对于2种基于l1正则化的算法,OMP算法的迭代次数与耗时更少,均... 针对压缩感知模型,讨论了基于l0正则化的正交匹配追踪算法(OMP)与基于l1正则化的同伦算法(HM)和迭代加权最小二乘法(IRLS).通过数值实验结果分析,验证了3种算法的有效性,且相对于2种基于l1正则化的算法,OMP算法的迭代次数与耗时更少,均方误差更小. 展开更多
关键词 l1 正则 l0 正则 压缩感知 稀疏恢复
下载PDF
基于L_1范数的总变分正则化超分辨率图像重建 被引量:15
18
作者 占美全 邓志良 《科学技术与工程》 2010年第28期6903-6906,共4页
设计了一种基于L1范数的总变分正则化超分辨率图像序列重建算法。采用L1范数对重建图像保真度进行约束,利用总变分正则化克服重建问题的病态性,有效地保持了图像的边缘并且提高了运算速度;运用设计的算法对模拟的低分辨率图像序列进行重... 设计了一种基于L1范数的总变分正则化超分辨率图像序列重建算法。采用L1范数对重建图像保真度进行约束,利用总变分正则化克服重建问题的病态性,有效地保持了图像的边缘并且提高了运算速度;运用设计的算法对模拟的低分辨率图像序列进行重建,分别从主观效果和客观衡量指标两方面与基于L2范数的总变分正则化的超分辨率重建结果进行比较,实验结果表明该算法在保持图像边缘的同时,提高了超分辨率重建算法的运算速度。 展开更多
关键词 总变分 正则 超分辨率 l1范数 l2范数
下载PDF
基于L_(2,1)模和图正则化的低秩迁移子空间学习 被引量:2
19
作者 屈磊 方怡 +1 位作者 熊友玲 唐俊 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第12期1738-1749,共12页
本文提出一种基于L_(2,1)模和图正则化的低秩迁移子空间学习方法.首先,在低秩重构过程中通过对重构矩阵施加具有旋转不变性的L_(2,1)模约束,可在挖掘目标域数据的关键特征的同时提高算法对不同姿态图片分类的鲁棒性.其次,在目标函数中... 本文提出一种基于L_(2,1)模和图正则化的低秩迁移子空间学习方法.首先,在低秩重构过程中通过对重构矩阵施加具有旋转不变性的L_(2,1)模约束,可在挖掘目标域数据的关键特征的同时提高算法对不同姿态图片分类的鲁棒性.其次,在目标函数中引入图结构的正则化,使得迁移时数据中的局部几何结构信息得以充分利用,进一步提高了分类性能.最后,为解决源域数据较少导致的欠完备特征空间覆盖问题,在公共子空间中利用源域数据和目标域数据联合构造字典,保证了重构的鲁棒性.在Caltech256, Office, CMU–PIE, COIL20, USPS, MNIST, VOC2007和MSRC数据库上的大量对比实验验证了本文方法的有效性和鲁棒性. 展开更多
关键词 迁移学习 低秩重构 l2 1 正则
下载PDF
基于L1范数的全变分正则化超分辨重构算法 被引量:6
20
作者 李志明 《计算机工程与应用》 CSCD 北大核心 2016年第15期212-216,共5页
针对结构化照明显微成像系统的超分辨图像重构算法存在边界振铃效应、噪声免疫性差的问题,提出了一种基于L1范数的全变分正则化超分辨图像重构算法(简称L1/TV重构算法)。从结构化显微成像模型入手,分析了传统算法的设计原理和局限性;论... 针对结构化照明显微成像系统的超分辨图像重构算法存在边界振铃效应、噪声免疫性差的问题,提出了一种基于L1范数的全变分正则化超分辨图像重构算法(简称L1/TV重构算法)。从结构化显微成像模型入手,分析了传统算法的设计原理和局限性;论述了L1/TV重构算法的原理,采用L1范数对重构图像保真度进行约束,并利用全变分正则化有效克服了重构过程的病态性,保护了重构图像边缘。对比研究传统重构算法和L1/TV重构算法的性能。实验结果表明:L1/TV重构算法具有更强的抗噪声干扰能力,重构图像空间分辨率更高。 展开更多
关键词 全变分 正则 超分辨 l1 范数 重构
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部