期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Novel Eccentric Intrusion Detection Model Based on Recurrent Neural Networks with Leveraging LSTM
1
作者 Navaneetha Krishnan Muthunambu Senthil Prabakaran +3 位作者 Balasubramanian Prabhu Kavin Kishore Senthil Siruvangur Kavitha Chinnadurai Jehad Ali 《Computers, Materials & Continua》 SCIE EI 2024年第3期3089-3127,共39页
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this d... The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this development has expanded the potential targets that hackers might exploit.Without adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or alteration.The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks.This research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)units.The proposed model can identify various types of cyberattacks,including conventional and distinctive forms.Recurrent networks,a specific kind of feedforward neural networks,possess an intrinsic memory component.Recurrent Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended periods.Metrics such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual cyberattacks.RNNs are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection Model.This model utilises Recurrent Neural Networks,specifically exploiting LSTM techniques.The proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques. 展开更多
关键词 CYBERSECURITY intrusion detection machine learning leveraging long short-term memory(llstm) CICIDS2019 dataset innovative cyberattacks
下载PDF
基于PSO-LSTM网络的航电系统故障率预测研究 被引量:5
2
作者 孙毅刚 刘凯捷 《航空科学技术》 2021年第5期17-22,共6页
为了提高航电系统设备故障率预测的精度,本文提出了一种基于粒子群算法优化的长短期记忆神经网络(LSTM)预测方法。首先该模型以历史故障率序列作为输入,然后通过粒子群算法(PSO)对长短期记忆数据网络中的关键参数进行迭代优化,最后依据... 为了提高航电系统设备故障率预测的精度,本文提出了一种基于粒子群算法优化的长短期记忆神经网络(LSTM)预测方法。首先该模型以历史故障率序列作为输入,然后通过粒子群算法(PSO)对长短期记忆数据网络中的关键参数进行迭代优化,最后依据优化参数建立PSO-LSTM预测模型并进行故障率时间序列预测。主要解决了传统依据个体经验选取模型参数而导致的低拟合度、低预测精度和低效的问题。通过与典型预测模型的仿真数据进行对比,验证了所提出的PSOLSTM预测模型在航电系统设备故障率时间序列预测中具有更高的预测精度。 展开更多
关键词 长短期记忆神经网络 粒子群算法 循环神经网络 预测 可靠性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部