期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于l_(p)有界噪声的压缩数据分离
1
作者 李玲玉 黄尉 《数学学报(中文版)》 CSCD 北大核心 2023年第3期527-538,共12页
本文考虑l_(p)有界噪声约束下的压缩数据分离问题,即从压缩测量数据中重建信号的不同稀疏子成分.为了重构不同框架D_(1)∈R^(n×d_(1))和D_(2)∈R^(n×d_(2))下(近似)稀疏的不同子成分,我们首先提出了l_(1)-αl_(2)分解分析算法... 本文考虑l_(p)有界噪声约束下的压缩数据分离问题,即从压缩测量数据中重建信号的不同稀疏子成分.为了重构不同框架D_(1)∈R^(n×d_(1))和D_(2)∈R^(n×d_(2))下(近似)稀疏的不同子成分,我们首先提出了l_(1)-αl_(2)分解分析算法,在测量矩阵满足一定的约束等距性条件且字典之间满足某个相互相干性条件时,此算法可以处理不同噪声干扰下的信号分离问题.此外,基于经典Dantzig Selector模型,我们还引入了l_(1)-αl_(2)分解分析Dantzig Selector算法,在适当条件下此算法也可以稳定分离压缩数据.数值实验表明,l_(1)-αl_(2)最小化算法对于冗余紧框架下的数据分离问题具有鲁棒性和稳定性. 展开更多
关键词 压缩数据分离 l_(1)-αl_(2)最小化 l_(p)有界噪声 限制等距性条件 紧框架
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部