期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
噪声情形下块稀疏信号恢复的充分条件
1
作者 单浠 王金平 《宁波大学学报(理工版)》 CAS 2024年第3期44-49,共6页
压缩感知是一种有效的信号采集技术,利用信号的可压缩性,通过采样与非线性算法完美地恢复信号.基于压缩感知理论,本文通过块正交匹配追踪算法,研究在l_(∞)有界噪声影响下恢复块稀疏信号和强衰减块稀疏信号的约束等距性质,给出保证该算... 压缩感知是一种有效的信号采集技术,利用信号的可压缩性,通过采样与非线性算法完美地恢复信号.基于压缩感知理论,本文通过块正交匹配追踪算法,研究在l_(∞)有界噪声影响下恢复块稀疏信号和强衰减块稀疏信号的约束等距性质,给出保证该算法准确恢复原信号的充分条件,并通过数值实验对影响稀疏信号性能的因素进行分析比较. 展开更多
关键词 BOMp算法 l_(∞)有界噪声 稀疏信号 强衰减块稀疏信号
下载PDF
基于l_(p)有界噪声的压缩数据分离
2
作者 李玲玉 黄尉 《数学学报(中文版)》 CSCD 北大核心 2023年第3期527-538,共12页
本文考虑l_(p)有界噪声约束下的压缩数据分离问题,即从压缩测量数据中重建信号的不同稀疏子成分.为了重构不同框架D_(1)∈R^(n×d_(1))和D_(2)∈R^(n×d_(2))下(近似)稀疏的不同子成分,我们首先提出了l_(1)-αl_(2)分解分析算法... 本文考虑l_(p)有界噪声约束下的压缩数据分离问题,即从压缩测量数据中重建信号的不同稀疏子成分.为了重构不同框架D_(1)∈R^(n×d_(1))和D_(2)∈R^(n×d_(2))下(近似)稀疏的不同子成分,我们首先提出了l_(1)-αl_(2)分解分析算法,在测量矩阵满足一定的约束等距性条件且字典之间满足某个相互相干性条件时,此算法可以处理不同噪声干扰下的信号分离问题.此外,基于经典Dantzig Selector模型,我们还引入了l_(1)-αl_(2)分解分析Dantzig Selector算法,在适当条件下此算法也可以稳定分离压缩数据.数值实验表明,l_(1)-αl_(2)最小化算法对于冗余紧框架下的数据分离问题具有鲁棒性和稳定性. 展开更多
关键词 压缩数据分离 l_(1)-αl_(2)最小化 l_(p)有界噪声 限制等距性条件 紧框架
原文传递
STABLE AND ROBUST RECOVERY OF APPROXIMATELY k-SPARSE SIGNALS WITH PARTIAL SUPPORT INFORMATION IN NOISE SETTINGS VIA WEIGHTED ℓ_(p)(0
3
作者 Biao Du Anhua Wan 《Journal of Computational Mathematics》 SCIE CSCD 2023年第6期1137-1170,共34页
In the existing work,the recovery of strictly k-sparse signals with partial support information was derived in theℓ2 bounded noise setting.In this paper,the recovery of approximately k-sparse signals with partial supp... In the existing work,the recovery of strictly k-sparse signals with partial support information was derived in theℓ2 bounded noise setting.In this paper,the recovery of approximately k-sparse signals with partial support information in two noise settings is investigated via weightedℓp(0<p≤1)minimization method.The restricted isometry constant(RIC)conditionδt k<1 pη2 p−1+1 on the measurement matrix for some t∈[1+2−p 2+pσ,2]is proved to be sufficient to guarantee the stable and robust recovery of signals under sparsity defect in noisy cases.Herein,σ∈[0,1]is a parameter related to the prior support information of the original signal,andη≥0 is determined by p,t andσ.The new results not only improve the recent work in[17],but also include the optimal results by weightedℓ1 minimization or by standardℓp minimization as special cases. 展开更多
关键词 Signal recovery weightedℓp minimization Approximately k-sparse signal noise setting Reconstruction error bound Restricted isometry property
原文传递
一种新的广义鲁棒主成分分析模型及其图像去噪应用
4
作者 袁柳洋 汪大为 +1 位作者 贾世会 迟晓妮 《系统科学与数学》 CSCD 北大核心 2024年第12期3511-3523,共13页
文章在结合加权S_p范数最小化的鲁棒主成分分析(WSNM-RPCA)模型与广义鲁棒主成分分析(GRPCA)模型的基础上,同时利用l_(2,1)范数重新构造了一种新的广义鲁棒主成分分析(GWSLRPCA)模型.新的模型提升了对矩阵重要秩成分恢复的准确性,并运... 文章在结合加权S_p范数最小化的鲁棒主成分分析(WSNM-RPCA)模型与广义鲁棒主成分分析(GRPCA)模型的基础上,同时利用l_(2,1)范数重新构造了一种新的广义鲁棒主成分分析(GWSLRPCA)模型.新的模型提升了对矩阵重要秩成分恢复的准确性,并运用随机排序的交替方向乘子法对新模型进行求解.数值实验结果显示,新的模型GWSLRPCA对被混合噪声污染的图片不仅能分离出图片的有效低秩信息以及其他的噪声部分,而且GWSLRPCA的图像恢复效果更佳.在客观评价标准上GWSLRPCA的各项数据也优于Mean-Filter、WSNM-RPCA与GRPCA模型. 展开更多
关键词 加权S_(p)范数 l_(2 1)范数 混合噪声 鲁棒性 随机排序 交替方向乘子法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部