期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
Label fusion for segmentation via patch based on local weighted voting
1
作者 Kai ZHU Gang LIU +1 位作者 Long ZHAO Wan ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第5期680-688,共9页
Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challeng... Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challenge. In this paper we propose a novel patch-based segmentation method combining a local weighted voting strategy with Bayesian inference. Multiple atlases are registered to a target image by an advanced normalization tools(ANTs) algorithm. To obtain a segmentation of the target, labels of the atlas images are propagated to the target image. We first adopt intensity prior and label prior as two key metrics when implementing the local weighted voting scheme, and then compute the two priors at the patch level. Further, we analyze the label fusion procedure concerning the image background and take the image background as an isolated label when estimating the label prior. Finally, by taking the Dice score as a criterion to quantitatively assess the accuracy of segmentations, we compare the results with those of other methods, including joint fusion, majority voting, local weighted voting, majority voting based on patch, and the widely used Free Surfer whole-brain segmentation tool. It can be clearly seen that the proposed algorithm provides better results than the other methods. During the experiments, we make explorations about the influence of different parameters(including patch size, patch area, and the number of training subjects) on segmentation accuracy. 展开更多
关键词 label fusion Local weighted voting Patch-based Background analysis
原文传递
面向小样本抽取式问答的多标签语义校准方法
2
作者 刘青 陈艳平 +2 位作者 邹安琪 秦永彬 黄瑞章 《应用科学学报》 CAS CSCD 北大核心 2024年第1期161-173,共13页
小样本抽取式问答任务旨在利用文章给定的上下文片段,抽取出真实的答案片段。其基线模型采用的方法只针对跨度进行学习,缺乏对全局语义信息的利用,在含有多组不同重复跨度的实例中存在着理解偏差等问题。为了解决上述问题,该文利用不同... 小样本抽取式问答任务旨在利用文章给定的上下文片段,抽取出真实的答案片段。其基线模型采用的方法只针对跨度进行学习,缺乏对全局语义信息的利用,在含有多组不同重复跨度的实例中存在着理解偏差等问题。为了解决上述问题,该文利用不同层级的语义提出了一种面向小样本抽取式问答任务的多标签语义校准方法。采用包含全局语义信息的头标签和基线模型中的特殊字符构成多标签进行语义融合,并利用语义融合门来控制全局信息流的引入,将全局语义信息融合到特殊字符的语义信息中。然后,利用语义筛选门对新融入的全局语义信息和该特殊字符的原有语义信息进行保留与更替,实现对标签偏差语义的校准。在8个小样本抽取式问答数据集中的56组实验结果表明:该方法在评价指标F1值上均明显优于基线模型,证明了所提方法的有效性和先进性。 展开更多
关键词 小样本抽取式问答 跨度抽取式问答 多标签语义融合 双门控机制 机器阅读理解
下载PDF
位置标签增强的中文医学命名实体级联识别
3
作者 王旭阳 赵丽婕 张继远 《计算机工程与应用》 CSCD 北大核心 2024年第2期121-128,共8页
针对一般领域的命名实体识别方法不能直接用于中文医学专业实体的识别,现有的相关研究只专注于英文文本和扁平结构的医学实体识别等问题,通过对专业领域实体识别方法的研究,结合中文医学实体的特点提出了一种面向中文医学实体的级联识... 针对一般领域的命名实体识别方法不能直接用于中文医学专业实体的识别,现有的相关研究只专注于英文文本和扁平结构的医学实体识别等问题,通过对专业领域实体识别方法的研究,结合中文医学实体的特点提出了一种面向中文医学实体的级联识别方法。将每个字符元素相对于实体的位置标签嵌入模型,并结合中文医学实体跨度内不同元素的重要程度进行实体的融合表示。通过序列标注方法检测字符的位置标签,利用字符的位置信息指导候选实体生成,并进行实体语义分类。模型在CMeEE和CCKS2018数据集以及中文糖尿病科研文献数据集上分别进行扁平实体、嵌套实体和不连续性长实体的识别实验。实验结果表明,该方法能够有效地识别中文医学文本中不同结构的实体。 展开更多
关键词 中文医学命名实体 位置标签嵌入 结合元素重要程度的实体融合表示 级联识别 线性结构
下载PDF
基于改进YOLOv5的遥感图像目标检测 被引量:3
4
作者 崔丽群 曹华维 《计算机工程》 CAS CSCD 北大核心 2024年第4期228-236,共9页
目前目标检测技术虽然已经趋于成熟,但是对遥感图像的检测仍存在不少挑战。针对遥感图像的背景复杂、目标尺度差异大、目标方向任意等特点造成目标检测精度低下的问题,提出一种基于改进YOLOv5的遥感图像目标检测算法。首先,构建一种联... 目前目标检测技术虽然已经趋于成熟,但是对遥感图像的检测仍存在不少挑战。针对遥感图像的背景复杂、目标尺度差异大、目标方向任意等特点造成目标检测精度低下的问题,提出一种基于改进YOLOv5的遥感图像目标检测算法。首先,构建一种联合注意力的多尺度特征增强网络,充分融合高低层特征,使特征层具有语义信息的同时包含丰富的细节信息,并在融合过程中利用设计的特征聚焦模块帮助模型选择关键特征,抑制无关信息。其次,使用感受野模块(RFB)对融合后的特征图进行更新,扩大特征图的感受野,减少特征信息损失。最后,对目标增加旋转角度,并采用圆形平滑标签将回归问题转化成分类问题,提高遥感目标定位的准确性。在用于航拍图像目标检测的大规模数据集(DOTA)上的实验结果表明,与YOLOv5算法相比,所提算法的交并比(Io U)为0.5和0.5~0.95时的平均精度均值(m AP@0.5和m AP@0.5∶0.95)分别提高了7.3和3.3个百分点,能够明显提高复杂背景下遥感图像目标的检测精度,并改善对遥感目标的漏检和误检情况。 展开更多
关键词 目标检测 遥感图像 特征融合 感受野模块 圆形平滑标签
下载PDF
融合标签知识的中文医学命名实体识别
5
作者 尹宝生 周澎 《计算机科学》 CSCD 北大核心 2024年第S01期128-134,共7页
医学领域命名实体识别是信息抽取任务重要的研究内容之一,其训练数据主要来源于临床实验数据、健康档案、电子病历等非结构化文本,然而标注这些数据需要专业人员耗费大量人力、物力和时间资源。在缺乏大规模医学训练数据的情况下,医学... 医学领域命名实体识别是信息抽取任务重要的研究内容之一,其训练数据主要来源于临床实验数据、健康档案、电子病历等非结构化文本,然而标注这些数据需要专业人员耗费大量人力、物力和时间资源。在缺乏大规模医学训练数据的情况下,医学领域命名实体识别模型很容易出现识别错误的情况。为解决这一难题,文中提出了一种融合标签知识的中文医学命名实体识别方法,即通过专业领域词典获得文本标签的释义后,分别将文本、标签及标签释义编码,基于自适应融合机制进行融合,有效平衡特征提取模块和语义增强模块的信息流,从而提高模型性能。其核心思想在于医学实体标签是通过总结归纳大量医学数据得到的,而标签释义是对标签进行科学解释和说明的结果,模型融入这些蕴含了丰富的医学领域内的先验知识,可以使其更准确地理解实体在医学领域中的语义并提升其识别效果。实验结果表明,该方法在中文医学实体抽取数据集(CMeEE-V2)3个基线模型上分别取得了0.71%,0.53%和1.17%的提升,并且为小样本场景下的实体识别提供了一个有效的解决方案。 展开更多
关键词 中文医学命名实体识别 标签知识 先验知识 自适应融合机制 小样本
下载PDF
结合对象属性识别的图像场景图生成方法研究
6
作者 周浩 罗廷金 崔国恒 《计算机科学》 CSCD 北大核心 2024年第11期205-212,共8页
场景图生成在视觉场景深度理解任务中发挥着重要的作用。现有的场景图生成方法主要关注场景中对象的位置、类别以及对象之间的关系,而忽略了对象属性蕴含的丰富场景语义信息。为了将图像属性语义融入场景图,提出了一种结合对象属性识别... 场景图生成在视觉场景深度理解任务中发挥着重要的作用。现有的场景图生成方法主要关注场景中对象的位置、类别以及对象之间的关系,而忽略了对象属性蕴含的丰富场景语义信息。为了将图像属性语义融入场景图,提出了一种结合对象属性识别的图像场景图生成方法。首先针对属性识别的多标签分类问题,提出了一种基于混合分类器的属性分类损失函数来进行属性识别,通过结合二值交叉熵函数训练的二分类器和改进的团组交叉熵函数训练的多分类器来实现单个属性分类的查准率和多个属性预测的查全率全面提升。其次,通过将属性识别分支与原有场景图框架进行融合,将提取的属性信息作为额外的上下文语义与对象特征进行融合后辅助对象之间关系的识别。最后,模型在VG150数据集上与多个基准模型进行了对比实验,结果表明所提模型的对象属性预测和关系识别均取得了更优的结果。 展开更多
关键词 场景图生成 对象属性识别 属性融合 关系预测 多标签分类 团组交叉熵函数
下载PDF
深度学习在糖尿病视网膜病变分级中的应用 被引量:1
7
作者 张志强 赵可辉 +2 位作者 牛惠芳 张子宇 周连田 《计算机系统应用》 2024年第1期231-244,共14页
近年来,糖尿病视网膜病变(diabetic retinopathy,DR)成为全球失明人口增加的主要原因,早期的DR严重程度分级对防止DR患者视力丧失尤为重要.由于糖尿病患者数量的逐年上升,DR分级的需求量也不断增加,然而传统的人工分级不能满足日益增长... 近年来,糖尿病视网膜病变(diabetic retinopathy,DR)成为全球失明人口增加的主要原因,早期的DR严重程度分级对防止DR患者视力丧失尤为重要.由于糖尿病患者数量的逐年上升,DR分级的需求量也不断增加,然而传统的人工分级不能满足日益增长的需求,且人工分级耗时费力.深度学习技术的发展,为DR检测和分级提供了高效率且更可靠的手段.虽然,目前的DR二元检测已经取得十分好的效果,然而由于糖尿病视网膜病变的复杂性和病变程度之间的差距细微,DR严重程度分级仍然是一个具有挑战性的问题.本文对近年来涌现的DR分级方法进行了研究和总结:介绍了基于VGG、InceptionNet、ResNet、EfficientNet、DenseNet、CapsNet模型的6种深度学习分级方法;并介绍了基于多网络融合的DR分级方法;最后对基于深度学习的DR分级方法的研究趋势进行总结和展望. 展开更多
关键词 糖尿病视网膜病变 深度学习 卷积神经网络 多网络融合 多标签分类
下载PDF
基于多级区域选择与跨层特征融合的野生菌分类
8
作者 李俊仪 李向阳 +3 位作者 龙朝勋 李海燕 李红松 余鹏飞 《计算机工程》 CAS CSCD 北大核心 2024年第9期179-188,共10页
近年来误食有毒野生菌导致的中毒事件频发,严重危害人们的身体健康,这使得准确鉴别野生菌变得尤为重要。然而,现有的野生菌分类算法在处理背景噪声大、类间差异小和类内差异大的图片时容易出现识别错误的问题。为了解决这一问题,提出一... 近年来误食有毒野生菌导致的中毒事件频发,严重危害人们的身体健康,这使得准确鉴别野生菌变得尤为重要。然而,现有的野生菌分类算法在处理背景噪声大、类间差异小和类内差异大的图片时容易出现识别错误的问题。为了解决这一问题,提出一种基于Vision Transformer(ViT)架构结合多级区域选择和跨层特征融合的野生菌分类算法。该算法旨在捕获具有强鉴别力的特征,以确保网络能够聚焦在主要信息上,并提高分类的准确性。首先采用ViT作为网络框架,以提取野生菌图像的特征和全局上下文信息。其次设计多头自注意力选择模块,用于提取具有鉴别力的token,并通过自适应分配算法为不同层级的编码层确定抽取token的数量。最后为进一步提升分类性能,引入跨层特征融合策略和标签平滑损失进行拟合训练,从而减少细节信息的丢失。为使网络对野生菌图像特征的学习更具针对性,自建野生菌数据集。实验结果表明,所提出的算法与基线算法相比,分类精度有了显著提高,准确率达到98.65%。 展开更多
关键词 图像分类 Vision Transformer架构 特征选择 自适应分配 特征融合 标签平滑
下载PDF
结合时间注意力机制和单模态标签自动生成策略的自监督多模态情感识别
9
作者 孙强 王姝玉 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期588-601,共14页
大多数多模态情感识别方法旨在寻求一种有效的融合机制,构建异构模态的特征,从而学习到具有语义一致性的特征表示。然而,这些方法通常忽略了模态间情感语义的差异性信息。为解决这一问题,提出了一种多任务学习框架,联合训练1个多模态任... 大多数多模态情感识别方法旨在寻求一种有效的融合机制,构建异构模态的特征,从而学习到具有语义一致性的特征表示。然而,这些方法通常忽略了模态间情感语义的差异性信息。为解决这一问题,提出了一种多任务学习框架,联合训练1个多模态任务和3个单模态任务,分别学习多模态特征间的情感语义一致性信息和各个模态所含情感语义的差异性信息。首先,为了学习情感语义一致性信息,提出了一种基于多层循环神经网络的时间注意力机制(TAM),通过赋予时间序列特征向量不同的权重来描述情感特征的贡献度。然后,针对多模态融合,在语义空间进行了逐语义维度的细粒度特征融合。其次,为了有效学习各个模态所含情感语义的差异性信息,提出了一种基于模态间特征向量相似度的自监督单模态标签自动生成策略(ULAG)。通过在CMU-MOSI,CMU-MOSEI, CH-SIMS 3个数据集上的大量实验结果证实,提出的TAM-ULAG模型具有很强的竞争力:在分类指标(Acc_(2),F_(1))和回归指标(MAE, Corr)上与基准模型的指标相比均有所提升;对于二分类识别准确率,在CMUMOSI和CMU-MOSEI数据集上分别为87.2%和85.8%,而在CH-SIMS数据集上达到81.47%。这些研究结果表明,同时学习多模态间的情感语义一致性信息和各模态情感语义的差异性信息,有助于提高自监督多模态情感识别方法的性能。 展开更多
关键词 多模态情感识别 自监督标签生成 多任务学习 时间注意力机制 多模态融合
下载PDF
基于CSTDNet的PCB表面元器件检测算法
10
作者 郑飞 储茂祥 +1 位作者 巩荣芬 刘光虎 《微电子学与计算机》 2024年第9期56-65,共10页
PCB表面元器件存在分布密集、尺寸小、外观相似等特点,所以检测时容易出现漏检和误检问题。以VFNet为基础,提出了一种名为CSTDNet(Cross-Scale Task Dynamic Network)的PCB表面元器件检测算法。首先,在特征融合网络中添加跨尺度交互特... PCB表面元器件存在分布密集、尺寸小、外观相似等特点,所以检测时容易出现漏检和误检问题。以VFNet为基础,提出了一种名为CSTDNet(Cross-Scale Task Dynamic Network)的PCB表面元器件检测算法。首先,在特征融合网络中添加跨尺度交互特征模块,以增强对小型元器件的特征描述能力;其次,在检测头网络中引入任务对齐学习机制,优化分类和回归任务的空间一致性;另外,在正负样本选择的过程中引入高斯动态软标签分配策略,以更好地补偿小型元器件的正样本数量。实验结果表明,改进后算法的FPS、mAP和mAP_s分别提升了10.7%、11.8%和7.6%,有效地提高了密集场景下小型元器件的检测性能。 展开更多
关键词 元器件 VFNet 特征融合 标签分配
下载PDF
技术评审专家遴选方法在颠覆性技术专家预判平台上的应用
11
作者 林毅 张均胜 +1 位作者 刘志辉 王唯滢 《中国科技资源导刊》 2024年第2期54-62,共9页
评审专家遴选是技术评审中的关键环节。鉴于颠覆性技术专家预判平台预判系统对时效性和智能型的要求,专家遴选对预判结果具有决定性影响。通过学术专长匹配和专业遴选来选择符合要求的专家,可以降低成本,提高推荐效率与准确度,完成颠覆... 评审专家遴选是技术评审中的关键环节。鉴于颠覆性技术专家预判平台预判系统对时效性和智能型的要求,专家遴选对预判结果具有决定性影响。通过学术专长匹配和专业遴选来选择符合要求的专家,可以降低成本,提高推荐效率与准确度,完成颠覆性技术的预测任务。基于学术网络表示学习的方法既可以避免大量特征工程,又可以方便不同类型的特征进行融合。利用异质网络表示学习方法和标签排序的学术专长画像方法构建专家库,并使用融合专家综合评价指标特征的匹配方法对待预判的颠覆性技术和专家专长进行匹配,为专家遴选提供一份专业背景匹配的候选专家列表。这种方法在Academic Social Network数据集上进行模拟实验。实验结果表明,这种方法能提升项目评审专家学术专长匹配,在加入综合指标特征后,专家的综合指标特征能有效地反馈到实验结果中,从而提高评审系统的时效性和智能性。 展开更多
关键词 专家遴选 标签排序 特征融合 颠覆性技术
下载PDF
古诗词中的探赜索隐:决策层融合大模型修正的典故引用识别方法
12
作者 布文茹 王昊 +2 位作者 李晓敏 周抒 邓三鸿 《科技情报研究》 CSSCI 2024年第4期37-52,共16页
[目的/意义]典故作为文学创作中一种重要且广泛使用的修辞手法,对于研究中国古代文学具有不可估量的价值。尽管如此,典故的自动识别技术尚未成熟,目前主要依赖人工识别。因此,对典故的智能识别技术有待进一步深入研究。[方法/过程]文章... [目的/意义]典故作为文学创作中一种重要且广泛使用的修辞手法,对于研究中国古代文学具有不可估量的价值。尽管如此,典故的自动识别技术尚未成熟,目前主要依赖人工识别。因此,对典故的智能识别技术有待进一步深入研究。[方法/过程]文章提出一种决策层融合大模型修正的典故引用识别方法。该方法结合了传统序列标注技术和通用大语言模型,引入提示模板在决策层进行输出融合,以提高识别的准确性。此外,文章还构建了一套专门针对典故识别问题的评价指标体系。[结果/结论]通过泛化式检验,AR_BBC_LP典故识别模型在实验中表现出色,P典、R典、F1典指标分别达到了89.75%、89.38%、89.56%,明显优于现有基线模型。结果表明,该模型不仅提升了传统序列标注模型的性能,还为大语言模型的应用开辟了新领域,也为典故识别及其在中国古代文学研究中的应用提供了新视角和强有力的方法支持。 展开更多
关键词 典故识别 决策层融合 序列标注 大语言模型 提示学习
下载PDF
融合标签特征和胶囊注意力的口语理解方法
13
作者 李丹涛 曾碧 +1 位作者 魏鹏飞 蔡佳 《计算机工程与设计》 北大核心 2024年第8期2484-2491,共8页
针对目前意图检测和槽位填充联合学习中未充分考虑交互前标签特征信息的有效提取和融合,缺乏对交互后标签特征的提炼问题,提出一种融合标签特征和胶囊注意力的口语理解方法。主要由意图与槽位标签特征融合交互(label feature fusion int... 针对目前意图检测和槽位填充联合学习中未充分考虑交互前标签特征信息的有效提取和融合,缺乏对交互后标签特征的提炼问题,提出一种融合标签特征和胶囊注意力的口语理解方法。主要由意图与槽位标签特征融合交互(label feature fusion interactive, LFFI)和多头胶囊注意力机制(multi-head capsule attention, MHCA)两大关键模组组成。LFFI-MHCA通过LFFI提取序列中有效的意图和槽位标签信息,对两者进行融合和交互;利用MHCA对交互过程中产生的不同子空间信息进行提炼,获得更为精确的意图和槽位标签特征。该模型在ATIS和SNIPS数据集上进行实验,句子准确率分别为88.1%和89.0%,验证了该模型的有效性。 展开更多
关键词 口语理解 意图检测 槽位填充 标签特征融合交互 多头胶囊注意力机制 深度学习 自然语言处理
下载PDF
基于标签嵌入的作文自动评分方法
14
作者 宋超 任鸽 +2 位作者 宋银忠 柳骏杰 杨勇 《信息技术》 2024年第4期28-35,43,共9页
目前的作文自动评分方法往往采用大型预训练模型来获取语义特征,由于预训练语料与作文领域特征不符,且对长篇作文提取特征效果不佳,因此该类方法的性能并不理想。文中提出了一种基于标签嵌入的作文自动评分方法,使用了一个改进的BiLSTM... 目前的作文自动评分方法往往采用大型预训练模型来获取语义特征,由于预训练语料与作文领域特征不符,且对长篇作文提取特征效果不佳,因此该类方法的性能并不理想。文中提出了一种基于标签嵌入的作文自动评分方法,使用了一个改进的BiLSTM网络和BERT模型来提取作文的领域特征与抽象特征,同时利用门控机制调整两者对作文评分的影响,最后经过特征融合对作文进行自动评分。实验结果表明,所提出模型在Kaggle ASAP竞赛的作文自动评分数据集上性能显著提升,平均QWK值达到81.22%,验证了标签嵌入方法在作文自动评分任务中的有效性。 展开更多
关键词 计算机应用技术 预训练嵌入 标签嵌入 特征融合 自然语言处理
下载PDF
融入类别标签和主题信息的用户兴趣识别方法
15
作者 康智勇 李弼程 林煌 《计算机科学》 CSCD 北大核心 2024年第S01期661-668,共8页
社交网络用户兴趣发现对信息过载缓解、个性化推荐和信息传播正向引导等方面具有重要意义。目前已有的兴趣识别研究未能同时考虑文本主题信息及其对应的类别标签信息对模型学习文本特征的帮助,文中提出了一种融入类别标签和主题信息的... 社交网络用户兴趣发现对信息过载缓解、个性化推荐和信息传播正向引导等方面具有重要意义。目前已有的兴趣识别研究未能同时考虑文本主题信息及其对应的类别标签信息对模型学习文本特征的帮助,文中提出了一种融入类别标签和主题信息的用户兴趣识别方法。首先,利用BERT预训练模型、BiLSTM模型和多头自注意力机制分别获取文本和标签序列的语义特征;其次,引入标签注意力机制,使模型更加关注文本与其类别标签更相关的词语信息;然后,利用LDA主题模型和Word2Vec模型得到文本主题特征;接着,设计门控机制进行特征融合,使模型能够自适应地融合多种特征,进而实现微博文本兴趣类别分类;最后,统计用户发表的所有文本在各个兴趣类别上的数量,将数量最多的兴趣类别确定为用户兴趣识别结果。为验证所提方法的有效性,文中构建了一个微博兴趣识别数据集。实验结果表明,该模型在微博文本兴趣类别分类和用户兴趣识别任务中均取得了最优性能。 展开更多
关键词 社交网络 兴趣识别 主题模型 标签注意力机制 特征融合
下载PDF
基于动态图注意力与标签传播的实体对齐 被引量:1
16
作者 莫少聪 陈庆锋 +2 位作者 谢泽 刘春雨 邱俊铼 《计算机工程》 CAS CSCD 北大核心 2024年第4期150-159,共10页
实体对齐是多源数据库融合的有效方法,旨在找出多源知识图谱中的共指实体。近年来,图卷积网络(GCN)已成为实体对齐表示学习的新范式,然而,不同组织构建知识图谱的目标及规则存在巨大差异,要求实体对齐模型能够准确发掘知识图谱之间的长... 实体对齐是多源数据库融合的有效方法,旨在找出多源知识图谱中的共指实体。近年来,图卷积网络(GCN)已成为实体对齐表示学习的新范式,然而,不同组织构建知识图谱的目标及规则存在巨大差异,要求实体对齐模型能够准确发掘知识图谱之间的长尾实体特征,并且现有的GCN实体对齐模型过于注重关系三元组的结构表示学习,忽略了属性三元组丰富的语义信息。为此,提出一种实体对齐模型,引入动态图注意力网络聚合属性结构三元组表示,降低无关属性结构对实体表示的影响。同时,为缓解知识图谱的关系异构问题,引入多维标签传播对实体邻接矩阵的不同维度进行压缩,将实体特征根据压缩后的知识图谱邻接关系进行传播以获得关系结构表示,最后通过线性规划算法对实体表示相似度矩阵进行迭代以得到最终的对齐结果。在公开数据集ENFR-15K、EN-ZH-15K以及中文医学数据集MED-BBK-9K上进行实验,结果表明,该模型的Hits@1分别为0.942、0.926、0.427,Hits@10分别为0.963、0.952、0.604,MRR分别为0.949、0.939、0.551,消融实验结果也验证了模型中各模块的有效性。 展开更多
关键词 数据库融合 图卷积网络 实体对齐 标签传播 线性规划
下载PDF
多源传感器箱粒子LMB滤波算法
17
作者 张永权 李志彬 +1 位作者 张文博 苏镇镇 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期51-66,共16页
随着复杂跟踪场景的大量涌现,常规多源传感器多目标跟踪算法存在计算量大、跟踪精度低、无法估计目标航迹等不足,已无法满足现代战争的需求。笔者以主动传感器和被动传感器组成的多源传感器系统为背景,重点研究多源传感器多目标跟踪问... 随着复杂跟踪场景的大量涌现,常规多源传感器多目标跟踪算法存在计算量大、跟踪精度低、无法估计目标航迹等不足,已无法满足现代战争的需求。笔者以主动传感器和被动传感器组成的多源传感器系统为背景,重点研究多源传感器多目标跟踪问题的实现算法。针对“多主动+多被动”多源传感器系统量测无法充分融合且整体算法计算复杂度较高的问题,提出一种多源传感器箱粒子标签多伯努利(MS-BPF-LMB)滤波算法。首先,对传感器依据不同主动传感器进行分组,即将所有传感器划分为若干“单主动+多被动”传感器组;然后,通过并行运算,对各传感器组运用基于角度关联的多传感器信息融合算法,得到跟踪所需的有效量测;最后,在跟踪滤波阶段,通过引入箱粒子滤波数值计算方法,将获取的量测点划分为若干箱粒子,并对箱粒子滤波下的多传感器量测更新系数进行重新定义,以较低的计算复杂度实现LMB(Labeled multi-Bernoulli,LMB)滤波。仿真结果表明,所提算法在保证跟踪精度的前提下,误差明显降低且算法复杂度下降约40%,能够有效处理异构数据多源信息融合问题。 展开更多
关键词 目标跟踪 传感器数据融合 信息融合 箱粒子滤波 标签多伯努利滤波
下载PDF
基于全维动态卷积的无人机航拍图像轻量化目标检测
18
作者 魏仁干 丰霜 孔华锋 《计算机应用与软件》 北大核心 2024年第5期158-165,182,共9页
针对传统无人机航拍图像目标检测中出现的模型体积大、检测准确率低等问题,提出一种轻量化的无人机航拍图像目标检测算法。以YOLOv5s为基础,增加小目标检测层,采用全维动态卷积替换普通卷积,减少了参数量。使用跨层跨尺度的加权特征融合... 针对传统无人机航拍图像目标检测中出现的模型体积大、检测准确率低等问题,提出一种轻量化的无人机航拍图像目标检测算法。以YOLOv5s为基础,增加小目标检测层,采用全维动态卷积替换普通卷积,减少了参数量。使用跨层跨尺度的加权特征融合,并引入FasterNet模块,加强特征提取能力。使用动态标签分配策略,显著提升检测精度。实验结果表明,提出的算法在准确率和模型体积方面优于原YOLOv5s算法,可以更高效地完成无人机航拍图像的目标检测任务。 展开更多
关键词 航拍图像 目标检测 动态卷积 特征融合 标签分配
下载PDF
特征融合的多标签文本分类研究
19
作者 李楚贞 江涛 《软件》 2024年第2期44-46,共3页
作为多标签文本分类的一个重要步骤,目前特征提取方法已取得重大进展,但基于深度学习的特征提取方法存在获取特征单一、不全面等问题,因此,本文提出新的特征融合提取模型,即使用BiGRU提取文本的全局特征,Capsule network提取文本的局部... 作为多标签文本分类的一个重要步骤,目前特征提取方法已取得重大进展,但基于深度学习的特征提取方法存在获取特征单一、不全面等问题,因此,本文提出新的特征融合提取模型,即使用BiGRU提取文本的全局特征,Capsule network提取文本的局部特征和位置信息,同时使用TF-IDF提取文本的统计特征。实验证明该模型在公共数据集RCV1-V2和AAPD上的性能都得到改进。 展开更多
关键词 多标签 分类 特征融合
下载PDF
文档上下文异构表示的句子级关系抽取方法
20
作者 曹渝昆 程宇 +3 位作者 何祯奕 徐康乐 颜家洛 李云峰 《计算机工程》 CAS CSCD 北大核心 2024年第5期111-119,共9页
关系抽取是指从文本中识别2个实体的关系。现有研究利用数据分组处理取得了良好的效果,但由于组内数据之间交互较少,因此大多忽略了组内数据之间的关联。此外,部分方法定义了较多种类的标注信息,从而导致标注信息冗余。针对上述问题,提... 关系抽取是指从文本中识别2个实体的关系。现有研究利用数据分组处理取得了良好的效果,但由于组内数据之间交互较少,因此大多忽略了组内数据之间的关联。此外,部分方法定义了较多种类的标注信息,从而导致标注信息冗余。针对上述问题,提出一种文档上下文异构表示的句子级关系抽取方法。设计基于异构图网络的文档上下文信息模块,将组内数据中的词和关系建模为图上的节点,然后通过消息传递机制将组内信息进行交互,充分表征组内数据间的关联关系;设计基于异构图网络的关系信息模块用于捕捉关系信息,其与文档上下文信息模块中异构图网络参数共享,从而节约了计算资源;设计融合标记策略,引入一种逻辑上的虚拟标签减少标签种类,缓解标注信息冗余问题。实验结果表明,所构建模型在NYT和WebNLG数据集上的F1值分别为93.2%和94.7%,在复杂场景下的8个子任务中,取得了6个子任务的最优表现,验证了所提方法的有效性。 展开更多
关键词 融合标记 异构图网络 单模块单步模型 句子级关系抽取 自然语言处理
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部