期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PLDMLT:Multi-Task Learning of Diabetic Retinopathy Using the Pixel-Level Labeled Fundus Images
1
作者 Hengyang Liu Chuncheng Huang 《Computers, Materials & Continua》 SCIE EI 2023年第8期1745-1761,共17页
In the field of medical images,pixel-level labels are time-consuming and expensive to acquire,while image-level labels are relatively easier to obtain.Therefore,it makes sense to learn more information(knowledge)from ... In the field of medical images,pixel-level labels are time-consuming and expensive to acquire,while image-level labels are relatively easier to obtain.Therefore,it makes sense to learn more information(knowledge)from a small number of hard-to-get pixel-level annotated images to apply to different tasks to maximize their usefulness and save time and training costs.In this paper,using Pixel-Level Labeled Images forMulti-Task Learning(PLDMLT),we focus on grading the severity of fundus images for Diabetic Retinopathy(DR).This is because,for the segmentation task,there is a finely labeled mask,while the severity grading task is without classification labels.To this end,we propose a two-stage multi-label learning weakly supervised algorithm,which generates initial classification pseudo labels in the first stage and visualizes heat maps at all levels of severity using Grad-Cam to further provide medical interpretability for the classification task.A multitask model framework with U-net as the baseline is proposed in the second stage.A label update network is designed to alleviate the gradient balance between the classification and segmentation tasks.Extensive experimental results show that our PLDMLTmethod significantly outperforms other stateof-the-art methods in DR segmentation on two public datasets,achieving up to 98.897%segmentation accuracy.In addition,our method achieves comparable competitiveness with single-task fully supervised learning in the DR severity grading task. 展开更多
关键词 DR lesion segmentation pseudo labels grading task class activation heat map update label network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部