A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2,……, E(G) }, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different fro...A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2,……, E(G) }, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than 2K is antimagic. In this paper, we show that some graphs with even factors are antimagic, which generalizes some known results.展开更多
基金Supported by the National Natural Science Foundation of China(11371052,11271267,10971144,11101020)the Fundamental Research Fund for the Central Universities(2011B019,3142013104,3142014127 and 3142014037)the North China Institute of Science and Technology Key Discipline Items of Basic Construction(HKXJZD201402)
文摘A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2,……, E(G) }, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than 2K is antimagic. In this paper, we show that some graphs with even factors are antimagic, which generalizes some known results.