This paper reviews the different multimodal applications based on a large ext ent of label-freeinaging modalities,ranging from linear to nonlinear optics,while also inchuding spectroscopicmeasurements.We put specific ...This paper reviews the different multimodal applications based on a large ext ent of label-freeinaging modalities,ranging from linear to nonlinear optics,while also inchuding spectroscopicmeasurements.We put specific emphasis on multimodal measurements going across the usual boundaries between imaging modalities,whereas most multimodal platforms combine techniquesbased on similar light interactions or similar hardware implementations.In this review,we limitthe scope to focus on applications for biology such as live cells or tissues,since by their nat ure ofbeing alive or fragile,we are often not free to take liberties with the image acquisition times andare forced to gather the maximum amount of information possible at one time.For such samples,imaging by a given label-free method usually presents a challenge in obt aining suficient opticalsignal or is limited in terms of the types of observable targets.Multimodal imaging is thenparticularly attractive for these samples in order to maximize the amount of measured infor-mation.While multimodal imaging is always useful in the sense of acquiring additional infor-mation from additional modes,at times it is possible to attain information that could not bediscovered using any single mode alone,which is the essence of the progress that is possible usinga multimodal approach.展开更多
The intracellular logistics system,consisting of vesicles,plays a crucial role in cellular transport.However,there is a lack of research on the types and functions of intracellular vesicles,and new technologies are ne...The intracellular logistics system,consisting of vesicles,plays a crucial role in cellular transport.However,there is a lack of research on the types and functions of intracellular vesicles,and new technologies are needed for further investigation.Recently,researchers have discovered a new subcellular structure known as Dark-vacuole bodies.The composition,function,and potential synergy with other organelles of these Dark-vacuole bodies remain unclear.In this study,we utilized the high-resolution label-free Fourier ptychographic microscopy,developed by our research group,along with fluorescence confocal technology,to study and analyze Dark-vacuole bodies.Our findings provide evidence of the influence of Dark-vacuole bodies on the morphology,distribution,movement,and cell cycle of living cells.Specifically,we analyzed the effects of drug induced stimulation of lipid drops and endosomes,promotion of cell endocytosis,and induction of cellular senescence on Dark-vacuole bodies.Our results indicate that Dark-vacuole bodies show little correlation with lipid drops and endocytosis vesicles,but are significantly associated with late endosomes.Furthermore,cellular senescence leads to a significant increase in the number and size of Dark-vacuole bodies.This study serves as a foundation for further confirming the nature of Dark-vacuole bodies as new organelles.展开更多
Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluor...Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluorescence of terbium ions(Tb^(3+))via binding with single-strand DNA.Mercury ion,Hg^(2+)induced thymine(T)-rich DNA strand to form a double-strand structure(T-Hg^(2+)-T),thus leading to fluorescence reduction.Based on the principle,Hg^(2+)can be quantified based on the fluorescence of Tb^(3+),the limit of detection was 0.0689μmol/L and the linear range was 0.1-6.0μmol/L.Due to the specificity of T-Hg^(2+)-T artificial base pair,the assay could distinguish Hg^(2+)from other metal ions.The recovery rate was ranged in 98.71%-101.34%for detecting mercury pollution in three food samples.The assay is low-cost,separation-free and mix-to-read,thus was a competitive tool for detection of mercury pollution to ensure food safety.展开更多
In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both ...In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both scientific research and clinical applications.However,the conventional approach for improving classification accuracy often involves labeling cells with fluorescence,which can lead to potential phototoxicity.This study proposes a label-free in-vivo flow cytometry technique,called dynamic YOLOv4(D-YOLOv4),which improves classification accuracy by integrating absorption intensity fluctuation modulation(AIFM)into YOLOv4 to demodulate the temporal features of moving red blood cells(RBCs)and platelets.Using zebrafish as an experimental model,the D-YOLOv4 method achieved average precisions(APs)of 0.90 for RBCs and 0.64 for thrombocytes(similar to platelets in mammals),resulting in an overall AP of 0.77.These scores notably surpass those attained by alternative network models,thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivoflow cytometry,which holds promise for diverse in-vivo cell classification applications.展开更多
Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,t...Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss.展开更多
AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide...AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide biomarkers for the diagnosis and treatment of PDR.METHODS:Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS/MS)analyses based on 4D label-free technology.Statistically differentially expressed proteins(DEPs),Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway representation and protein interactions were analyzed.RESULTS:A total of 12 samples were analyzed.The proteomics results showed that a total of 58 proteins were identified as DEPs,of which 47 proteins were up-regulated and 11 proteins were down-regulated.We found that C1q and tumor necrosis factor related protein 5(C1QTNF5),Clusterin(CLU),tissue inhibitor of metal protease 1(TIMP1)and signal regulatory protein alpha(SIRPα)can all be specifically regulated after aflibercept treatment.GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR.In addition,protein-protein interaction(PPI)network evaluation revealed that TIMP1 plays a central role in neural regulation.In addition,CD47/SIRPαmay become a key target to resolve anti-VEGF drug resistance in PDR.CONCLUSION:Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR.Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept,among which C1QTNF5,CLU,TIMP1 and SIRPαmay become targets for future treatment of PDR and resolution of anti-VEGF resistance.展开更多
Objective:The present study aimed to evaluate the possibility of using coherent anti-Stokes Raman spectroscopy(CARS) microscopy to determine the specific molecular morphology of cholesteatoma by detecting the natura...Objective:The present study aimed to evaluate the possibility of using coherent anti-Stokes Raman spectroscopy(CARS) microscopy to determine the specific molecular morphology of cholesteatoma by detecting the natural vibrational contrast of the chemical bonds without any staining.Materials and methods:Specimens from the mastoid and tympanic membrane with and without cholesteatoma were analyzed using CARS microscopy,two-photon excited fluorescence(TPEF) microscopy,and the second harmonic generation(SHG) microscopy.Results:In cholesteatoma tissues from the mastoid,a strong resonant signal at 2845 cm;was observed by CARS,which indicated the detection of the CH;hydro-carbon lipid bonds that do not generate visible signals at 2940 cm;suggestive of CH;bonds in amino acids.A strong resonant signal at 2940 cm;appeared in an area of the same specimen,which also generated abundant signals by TPEF and SHG microscopy at 817 nm,which was suggestive of collagen.In the tympanic membrane specimen with cholesteatoma,a strong resonant signal with corrugated morphology was detected,which indicated the presence of lipids.A strong signal was detected in the tympanic membrane with chronic otitis media using TPEF/SHG at 817 nm,which indicated collagen enrichment.The CARS and TPEF/SHG images were in accordance with the histology results.Conclusion:These results suggest the need to develop a novel CARS microendoscope that can be used in combination with TPEF/SHG to distinguish cholesteatoma from inflammatory tissues.展开更多
We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its ...We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth.OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules.However,given the inadequate absoption of some biomolcules,detection sensitivity at the same incident intensity requires improvement.In this study,a modulated continuous wave with power density less than 3mW/cm^(2)(1/4 of the ANSI safety limit)excited the weak photoacoustic(PA)signals of biological cells.A microcavity traneducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid;air pressure variation is inversely proportional to cavity volume at the same temperature increase.Considering that a PA wave expands in various directions,detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio.Therefore,we employ four detectors to acquire tiny PA signals simul-taneously.Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.展开更多
Atherosclerosis has been recognized as a chronic inflammation disease,in which many types of cells participate in this process,including lymphocytes,macrophages,dendritic cells(DCs),mast cells,vascular smooth muscle c...Atherosclerosis has been recognized as a chronic inflammation disease,in which many types of cells participate in this process,including lymphocytes,macrophages,dendritic cells(DCs),mast cells,vascular smooth muscle cells(SMCs).Developments in imaging technology provide the capability to observe cellular and tissue components and their interactions.The knowledge of the functions of immune cells and their interactions with other cell and tissue components will facilitate our discovery of biomarkers in atherosclerosis and prediction of the risk factor of rupture-prone plaques.Nonlinear optical microscopy based on two-photon excited autofluorescence and second harmonic generation(SHG)were developed to image mast cells,SMCs and collagen in plaque ex vivo using endogenous optical signals.Mast cells were imaged with two-photon tryptophan autofluorescence,SMCs were imaged with two-photon NADH auto fluorescence,and collagen were imaged with SHG.This development paves the way for further study of mast cell degranulation,and the effects of mast cell derived mediators such as induced synthesis and activation of matrix metalloproteinases(MMPs)which participate in the degradation of collagen.展开更多
Although immobilization-free and label-free electrochemical DNA(E-DNA)biosensors have engaged tremendous interest due to their superior properties,such as easy operation,time-saving and cost-saving,most of them are fa...Although immobilization-free and label-free electrochemical DNA(E-DNA)biosensors have engaged tremendous interest due to their superior properties,such as easy operation,time-saving and cost-saving,most of them are fabricated in homogeneous modes and usually produce high background current.In the present work,we proposed a new immobilization-free and label-free heterogeneous E-DNA assay based on a dual-blocker-aided multibranched hybridization chain reaction(HCR)for one-pot nucleic acid detection with zero background.The target nucleic acid triggers the HCR involving cascaded hybridization between two metastable hairpins,resulting in the generation of HCR products with multibranched arms,which can be captured onto the electrode viaπ-πstacking interactions between multibranched arms and reduced graphene oxide(rGO).Prior to the incubation process with an electrode,two blockers are designed to prohibit the nonspecific absorption of unreacted hairpin probes.Thus,an immobilization-free and label-free heterogeneous electrochemical assay for one-pot nucleic acid detection with zero background is readily realized.This strategy also presents additional merits of simplicity and cheap cost,since probe immobilization,signal tag labeling,and multiple incubation processes are avoided.Therefore,the as-proposed effective and versatile biosensor has great potential to be applied in nucleic acid-related practical biosensing.展开更多
Super resolution imaging capable of resolving details beyond the diffraction limit is highly desired in many scientific and application fields, including bio-medicine, nanomaterial science, and opto-electronic integra...Super resolution imaging capable of resolving details beyond the diffraction limit is highly desired in many scientific and application fields, including bio-medicine, nanomaterial science, and opto-electronic integration. Up to now, many different methods have been proposed, among which wide-field, label-free super resolution microscopy is indispensable due to its good applicability to diverse sample types, large field of view(FOV), and high imaging speed. In recent years,nanostructures have made a crucial contribution to the wide-field, label-free subdiffraction microscopy, with various working mechanisms and configuration designs. This review summarizes the recent applications of the nanostructures in the wide-field, label-free super resolution microscopy, with the emphasis on the designs of hyperlens with hyperbolic dispersion, microsphere with "nano-jets", and nanowire ring illumination microscopy based on spatial frequency shift effect. The bottlenecks of the current techniques and possible solutions are also discussed.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
The large use of nonlinear laser scanning microscopy in the past decade paved the way forpot ential clinical application of this imaging technique.Modern nonlinear microscopy techniquesoffer promising label-free solut...The large use of nonlinear laser scanning microscopy in the past decade paved the way forpot ential clinical application of this imaging technique.Modern nonlinear microscopy techniquesoffer promising label-free solutions to improve diagnostic performances on tissues.In particular,the combination of multiple nonlinear imaging techniques in the same microscope allows inte-grating_morphological with functional information in a morpho-functional scheme.Suchapproach provides a high-resolution label-free alternative to both histological and immunohis-tochemicai examination of tissues and is becoming increasingly popular among the clinicalcommumity.Nevertheless,several technical improvements,including automatic scanning andimage analysis,are required before the technique represents a standard diagnostic method.In thisreview paper,we highlight the capabilit ies of multimodal nonlinear microscopy for tissue inaging,by providing various examples on colon,arterial and skin tissues.The comparison between images acquired using multimodal nonlinear microscopy and histology shows a good agreement bet ween the two methods.The results demonstrate that multimodal nonlinear microscopy is apowerful label-free alternative to standard histopathological methods and has the potential tofind a stable place in the clinical setting in the near future.展开更多
基金funding from the Japan Society for the Promotionof Science(JSPS)through the Funding Program for World-Leading Innovative R&D on Science and Technology(FIR.ST Program)JSPS World Premier International Research Center Initiative Funding Program.
文摘This paper reviews the different multimodal applications based on a large ext ent of label-freeinaging modalities,ranging from linear to nonlinear optics,while also inchuding spectroscopicmeasurements.We put specific emphasis on multimodal measurements going across the usual boundaries between imaging modalities,whereas most multimodal platforms combine techniquesbased on similar light interactions or similar hardware implementations.In this review,we limitthe scope to focus on applications for biology such as live cells or tissues,since by their nat ure ofbeing alive or fragile,we are often not free to take liberties with the image acquisition times andare forced to gather the maximum amount of information possible at one time.For such samples,imaging by a given label-free method usually presents a challenge in obt aining suficient opticalsignal or is limited in terms of the types of observable targets.Multimodal imaging is thenparticularly attractive for these samples in order to maximize the amount of measured infor-mation.While multimodal imaging is always useful in the sense of acquiring additional infor-mation from additional modes,at times it is possible to attain information that could not bediscovered using any single mode alone,which is the essence of the progress that is possible usinga multimodal approach.
基金supported by the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.ZDKYYQ20220005)the National Natural Science Foundation of China(Nos.22150003,21727816,and 21721003).
文摘The intracellular logistics system,consisting of vesicles,plays a crucial role in cellular transport.However,there is a lack of research on the types and functions of intracellular vesicles,and new technologies are needed for further investigation.Recently,researchers have discovered a new subcellular structure known as Dark-vacuole bodies.The composition,function,and potential synergy with other organelles of these Dark-vacuole bodies remain unclear.In this study,we utilized the high-resolution label-free Fourier ptychographic microscopy,developed by our research group,along with fluorescence confocal technology,to study and analyze Dark-vacuole bodies.Our findings provide evidence of the influence of Dark-vacuole bodies on the morphology,distribution,movement,and cell cycle of living cells.Specifically,we analyzed the effects of drug induced stimulation of lipid drops and endosomes,promotion of cell endocytosis,and induction of cellular senescence on Dark-vacuole bodies.Our results indicate that Dark-vacuole bodies show little correlation with lipid drops and endocytosis vesicles,but are significantly associated with late endosomes.Furthermore,cellular senescence leads to a significant increase in the number and size of Dark-vacuole bodies.This study serves as a foundation for further confirming the nature of Dark-vacuole bodies as new organelles.
基金financially supported by National Natural Science Foundation of China(22074100)the Young Elite Scientist Sponsorship Program by CAST(YESS20200036)+3 种基金the Researchers Supporting Project Number RSP-2021/138King Saud University,Riyadh,Saudi ArabiaTechnological Innovation R&D Project of Chengdu City(2019-YF05-31702266-SN)Sichuan University-Panzhihua City joint Project(2020CDPZH-5)。
文摘Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluorescence of terbium ions(Tb^(3+))via binding with single-strand DNA.Mercury ion,Hg^(2+)induced thymine(T)-rich DNA strand to form a double-strand structure(T-Hg^(2+)-T),thus leading to fluorescence reduction.Based on the principle,Hg^(2+)can be quantified based on the fluorescence of Tb^(3+),the limit of detection was 0.0689μmol/L and the linear range was 0.1-6.0μmol/L.Due to the specificity of T-Hg^(2+)-T artificial base pair,the assay could distinguish Hg^(2+)from other metal ions.The recovery rate was ranged in 98.71%-101.34%for detecting mercury pollution in three food samples.The assay is low-cost,separation-free and mix-to-read,thus was a competitive tool for detection of mercury pollution to ensure food safety.
基金supported by the National Natural Science Foundation of China(62075042 and 62205060)the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(2020B1212030010)+1 种基金Fund for Research on National Major Research Instruments of China(Grant No.62027824)Fund for Science and Technology Innovation Cultivation of Guangdong University Students(No.pdjh2022b0543).
文摘In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both scientific research and clinical applications.However,the conventional approach for improving classification accuracy often involves labeling cells with fluorescence,which can lead to potential phototoxicity.This study proposes a label-free in-vivo flow cytometry technique,called dynamic YOLOv4(D-YOLOv4),which improves classification accuracy by integrating absorption intensity fluctuation modulation(AIFM)into YOLOv4 to demodulate the temporal features of moving red blood cells(RBCs)and platelets.Using zebrafish as an experimental model,the D-YOLOv4 method achieved average precisions(APs)of 0.90 for RBCs and 0.64 for thrombocytes(similar to platelets in mammals),resulting in an overall AP of 0.77.These scores notably surpass those attained by alternative network models,thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivoflow cytometry,which holds promise for diverse in-vivo cell classification applications.
基金supported by grants from the National Key Research and Development Program of China(2021YFA1101300,2021YFA1101800,and 2020YFA0112503)the National Natural Science Foundation of China(82030029,81970882,92149304,and 22302231)+5 种基金the Science and Technology Department of Sichuan Province(2021YFS0371)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190814093401920,JCYJ20210324125608022,JCYJ20190813152616459,and JCYJ20190808120405672)the Futian Healthcare Research Project(FTWS2022013 and FTWS2023080)the Open Research Fund of State Key Laboratory of Genetic Engineering,Fudan University(SKLGE-2104)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(23qnpy153)。
文摘Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJYXZDXK-016A)Henan Provincial Department of Science and Technology(No.LHGJ20200802).
文摘AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide biomarkers for the diagnosis and treatment of PDR.METHODS:Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS/MS)analyses based on 4D label-free technology.Statistically differentially expressed proteins(DEPs),Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway representation and protein interactions were analyzed.RESULTS:A total of 12 samples were analyzed.The proteomics results showed that a total of 58 proteins were identified as DEPs,of which 47 proteins were up-regulated and 11 proteins were down-regulated.We found that C1q and tumor necrosis factor related protein 5(C1QTNF5),Clusterin(CLU),tissue inhibitor of metal protease 1(TIMP1)and signal regulatory protein alpha(SIRPα)can all be specifically regulated after aflibercept treatment.GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR.In addition,protein-protein interaction(PPI)network evaluation revealed that TIMP1 plays a central role in neural regulation.In addition,CD47/SIRPαmay become a key target to resolve anti-VEGF drug resistance in PDR.CONCLUSION:Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR.Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept,among which C1QTNF5,CLU,TIMP1 and SIRPαmay become targets for future treatment of PDR and resolution of anti-VEGF resistance.
基金supported by grants from Ministry of Science and Technology of China,China-EU collaborative project(Grant No.0S2014GR0137)
文摘Objective:The present study aimed to evaluate the possibility of using coherent anti-Stokes Raman spectroscopy(CARS) microscopy to determine the specific molecular morphology of cholesteatoma by detecting the natural vibrational contrast of the chemical bonds without any staining.Materials and methods:Specimens from the mastoid and tympanic membrane with and without cholesteatoma were analyzed using CARS microscopy,two-photon excited fluorescence(TPEF) microscopy,and the second harmonic generation(SHG) microscopy.Results:In cholesteatoma tissues from the mastoid,a strong resonant signal at 2845 cm;was observed by CARS,which indicated the detection of the CH;hydro-carbon lipid bonds that do not generate visible signals at 2940 cm;suggestive of CH;bonds in amino acids.A strong resonant signal at 2940 cm;appeared in an area of the same specimen,which also generated abundant signals by TPEF and SHG microscopy at 817 nm,which was suggestive of collagen.In the tympanic membrane specimen with cholesteatoma,a strong resonant signal with corrugated morphology was detected,which indicated the presence of lipids.A strong signal was detected in the tympanic membrane with chronic otitis media using TPEF/SHG at 817 nm,which indicated collagen enrichment.The CARS and TPEF/SHG images were in accordance with the histology results.Conclusion:These results suggest the need to develop a novel CARS microendoscope that can be used in combination with TPEF/SHG to distinguish cholesteatoma from inflammatory tissues.
基金supported by the National Natural Science Foundation of China(Grant No.61178086)Science and Technology Program of Guangzhou,China(Grant No.2012J4300138)Foundation for Distinguished Young Talents in South China Normal University,China.(Grant No.2012KJ010).
文摘We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth.OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules.However,given the inadequate absoption of some biomolcules,detection sensitivity at the same incident intensity requires improvement.In this study,a modulated continuous wave with power density less than 3mW/cm^(2)(1/4 of the ANSI safety limit)excited the weak photoacoustic(PA)signals of biological cells.A microcavity traneducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid;air pressure variation is inversely proportional to cavity volume at the same temperature increase.Considering that a PA wave expands in various directions,detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio.Therefore,we employ four detectors to acquire tiny PA signals simul-taneously.Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.
基金This study was supported by United States NIH P41 EB015903-02S1 grant awarded to CPL.
文摘Atherosclerosis has been recognized as a chronic inflammation disease,in which many types of cells participate in this process,including lymphocytes,macrophages,dendritic cells(DCs),mast cells,vascular smooth muscle cells(SMCs).Developments in imaging technology provide the capability to observe cellular and tissue components and their interactions.The knowledge of the functions of immune cells and their interactions with other cell and tissue components will facilitate our discovery of biomarkers in atherosclerosis and prediction of the risk factor of rupture-prone plaques.Nonlinear optical microscopy based on two-photon excited autofluorescence and second harmonic generation(SHG)were developed to image mast cells,SMCs and collagen in plaque ex vivo using endogenous optical signals.Mast cells were imaged with two-photon tryptophan autofluorescence,SMCs were imaged with two-photon NADH auto fluorescence,and collagen were imaged with SHG.This development paves the way for further study of mast cell degranulation,and the effects of mast cell derived mediators such as induced synthesis and activation of matrix metalloproteinases(MMPs)which participate in the degradation of collagen.
基金supported by the National Natural Science Foundation of China(22304062)the Zhejiang Provincial Natural Science Foundation of China(LTGY24B050002)+1 种基金the Program for Science and Technology of Jiaxing(2023AY40028)the Baiqing Foundation of Jiaxing University(CD70621010).
文摘Although immobilization-free and label-free electrochemical DNA(E-DNA)biosensors have engaged tremendous interest due to their superior properties,such as easy operation,time-saving and cost-saving,most of them are fabricated in homogeneous modes and usually produce high background current.In the present work,we proposed a new immobilization-free and label-free heterogeneous E-DNA assay based on a dual-blocker-aided multibranched hybridization chain reaction(HCR)for one-pot nucleic acid detection with zero background.The target nucleic acid triggers the HCR involving cascaded hybridization between two metastable hairpins,resulting in the generation of HCR products with multibranched arms,which can be captured onto the electrode viaπ-πstacking interactions between multibranched arms and reduced graphene oxide(rGO).Prior to the incubation process with an electrode,two blockers are designed to prohibit the nonspecific absorption of unreacted hairpin probes.Thus,an immobilization-free and label-free heterogeneous electrochemical assay for one-pot nucleic acid detection with zero background is readily realized.This strategy also presents additional merits of simplicity and cheap cost,since probe immobilization,signal tag labeling,and multiple incubation processes are avoided.Therefore,the as-proposed effective and versatile biosensor has great potential to be applied in nucleic acid-related practical biosensing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735017 and 51672245)the Zhejiang Provincial Natural Science Foundation of China(Grant No.R17F050003)+4 种基金the National Key Basic Research Program of China(Grant No.2015CB352003)the Fundamental Research Funds for the Central Universities,Chinathe Program for Zhejiang Leading Team of S&T Innovation,Chinathe Cao Guangbiao Advanced Technology Program,ChinaFirst-class Universities and Academic Programs,China
文摘Super resolution imaging capable of resolving details beyond the diffraction limit is highly desired in many scientific and application fields, including bio-medicine, nanomaterial science, and opto-electronic integration. Up to now, many different methods have been proposed, among which wide-field, label-free super resolution microscopy is indispensable due to its good applicability to diverse sample types, large field of view(FOV), and high imaging speed. In recent years,nanostructures have made a crucial contribution to the wide-field, label-free subdiffraction microscopy, with various working mechanisms and configuration designs. This review summarizes the recent applications of the nanostructures in the wide-field, label-free super resolution microscopy, with the emphasis on the designs of hyperlens with hyperbolic dispersion, microsphere with "nano-jets", and nanowire ring illumination microscopy based on spatial frequency shift effect. The bottlenecks of the current techniques and possible solutions are also discussed.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
基金research leading to these results has receivedfunding:from the European Union Seventh Fra-mework Programme(FP7/2007-2013)under grantagreements 228334 and 28464from the Italian Ministry for Education,University and Research inthe framework of the Flagship Project NANOMAXfrom the Ente Cassa di Risparmio di Firenze(private foundation).
文摘The large use of nonlinear laser scanning microscopy in the past decade paved the way forpot ential clinical application of this imaging technique.Modern nonlinear microscopy techniquesoffer promising label-free solutions to improve diagnostic performances on tissues.In particular,the combination of multiple nonlinear imaging techniques in the same microscope allows inte-grating_morphological with functional information in a morpho-functional scheme.Suchapproach provides a high-resolution label-free alternative to both histological and immunohis-tochemicai examination of tissues and is becoming increasingly popular among the clinicalcommumity.Nevertheless,several technical improvements,including automatic scanning andimage analysis,are required before the technique represents a standard diagnostic method.In thisreview paper,we highlight the capabilit ies of multimodal nonlinear microscopy for tissue inaging,by providing various examples on colon,arterial and skin tissues.The comparison between images acquired using multimodal nonlinear microscopy and histology shows a good agreement bet ween the two methods.The results demonstrate that multimodal nonlinear microscopy is apowerful label-free alternative to standard histopathological methods and has the potential tofind a stable place in the clinical setting in the near future.