The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make u...The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make use of the full resolution of the MINFLUX microscope,it is important to select appropriate fluorescence probes and labeling strategies,especially in living-cell imaging.This paper mainly focuses on recent applications and developments of fluorescence probes and the relevant labeling strategy for MINFLUX microscopy.Moreover,we discuss the deficiencies that need to be addressed in the future and a plan for the possible progression of MINFLUX to help investigators who have been involved in or are just starting in the field of super-resolution imaging microscopy with theoretical support.展开更多
基金supported by the Science and Technology Commission of Shanghai Municipality (21DZ1100500)the Shanghai Municipal Science and Technology Major Project+1 种基金the Shanghai Frontiers Science Center Program (2021-2025 No.20)Shanghai Hong Kong,Macao,and Taiwan Cooperation Project (No.19490760900).
文摘The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make use of the full resolution of the MINFLUX microscope,it is important to select appropriate fluorescence probes and labeling strategies,especially in living-cell imaging.This paper mainly focuses on recent applications and developments of fluorescence probes and the relevant labeling strategy for MINFLUX microscopy.Moreover,we discuss the deficiencies that need to be addressed in the future and a plan for the possible progression of MINFLUX to help investigators who have been involved in or are just starting in the field of super-resolution imaging microscopy with theoretical support.