Effective implementation of the fast labeled multi-Bernoulli(FLMB)filter is addressed for target tracking with interval measurements.Firstly,a sequential Monte Carlo(SMC)implementation of the FLMB filter,SMC-FLMB filt...Effective implementation of the fast labeled multi-Bernoulli(FLMB)filter is addressed for target tracking with interval measurements.Firstly,a sequential Monte Carlo(SMC)implementation of the FLMB filter,SMC-FLMB filter,is derived based on generalized likelihood function weighting.Then,a box particle(BP)implementation of the FLMB filter,BP-FLMB filter,is developed,with a computational complexity reduction of the SMC-FLMB filter.Finally,an improved version of the BP-FLMB filter,improved BP-FLMB(IBP-FLMB)filter,is proposed,improving its estimation accuracy and real-time performance under the conditions of low detection probability and high clutter.Simulation results show that the BP-FLMB filter has a great improvement of the real-time performance than the SMC-FLMB filter,with similar tracking performance.Compared with the BP-FLMB filter,the IBP-FLMB filter has better estimation performance and real-time performance under the conditions of low detection probability and high clutter.展开更多
A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of tar...A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of target motions are modeled by using jump Markovian system(JMS),is presented in this paper.The close-form solution is derived for sequential Monte Carlo implementation of the GLMB filter based on the TBD model.In update,we derive a tractable GLMB density,which preserves the cardinality distribution and first-order moment of the labeled multi-target distribution of interest as well as minimizes the Kullback-Leibler divergence(KLD),to enable the next recursive cycle.The relevant simulation results prove that the proposed multiple-model GLMB-TBD(MM-GLMB-TBD)algorithm based on K-distributed clutter model can improve the detecting and tracking performance in both estimation error and robustness compared with state-of-the-art algorithms for sea clutter background.Additionally,the simulations show that the proposed MM-GLMB-TBD algorithm can accurately output the multitarget trajectories with considerably less computational complexity compared with the adapted dynamic programming based TBD(DP-TBD)algorithm.Meanwhile,the simulation results also indicate that the proposed MM-GLMB-TBD filter slightly outperforms the JMS particle filter based TBD(JMSMeMBer-TBD)filter in estimation error with the basically same computational cost.Finally,the impact of the mismatches on the clutter model and clutter parameter is investigated for the performance of the MM-GLMB-TBD filter.展开更多
针对标准标签多伯努利(labeled multi-Bernoulli,LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model LMB,MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到...针对标准标签多伯努利(labeled multi-Bernoulli,LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model LMB,MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到了新的预测和更新方程,并给出了算法的序贯蒙特卡罗实现。仿真实验表明,MM-LMB算法能对多机动目标进行有效跟踪,在复杂探测环境下跟踪精度优于多模型概率假设密度(multiple model probability hypothesis density,MM-PHD)算法和多模型势平衡多目标多伯努利(multiple model cardinality balanced multi-target multi-Bernoulli,MM-CBMeMBer)算法;所提算法计算量当目标相距较远时低于MM-PHD和MM-CBMeMBer,目标聚集时增长速度快于对比算法。展开更多
针对多传感器协同跟踪目标过程中存在多节点间的信息时间延迟和空间配准偏差问题,提出基于配准偏差和时间延迟的标签多伯努利滤波(labeled multi-Bernoulli based on the registration errors and time delay,LMB-ReDe)算法。首先,通过...针对多传感器协同跟踪目标过程中存在多节点间的信息时间延迟和空间配准偏差问题,提出基于配准偏差和时间延迟的标签多伯努利滤波(labeled multi-Bernoulli based on the registration errors and time delay,LMB-ReDe)算法。首先,通过排队论对节点个数随机变化的网络时间随机延迟进行建模;然后,构建了延迟环境中的非固定周期的目标转移过程和时间延迟过程中的伪量测;最后,在LMB滤波基础上提出LMB-ReDe算法实现目标状态的实时估计。仿真结果表明,在节点数随机变化的多传感器协同探测中,采用LMB-ReDe滤波器跟踪位置精度优于标准的LMB滤波器。展开更多
It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random...It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB) approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB) filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD) filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer) filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated.展开更多
A novel algorithm that combines the generalized labeled multi-Bernoulli(GLMB) filter with signal features of the unknown emitter is proposed in this paper. In complex electromagnetic environments, emitter features(EFs...A novel algorithm that combines the generalized labeled multi-Bernoulli(GLMB) filter with signal features of the unknown emitter is proposed in this paper. In complex electromagnetic environments, emitter features(EFs) are often unknown and time-varying. Aiming at the unknown feature problem, we propose a method for identifying EFs based on dynamic clustering of data fields. Because EFs are time-varying and the probability distribution is unknown, an improved fuzzy C-means algorithm is proposed to calculate the correlation coefficients between the target and measurements, to approximate the EF likelihood function. On this basis, the EF likelihood function is integrated into the recursive GLMB filter process to obtain the new prediction and update equations.Simulation results show that the proposed method can improve the tracking performance of multiple targets,especially in heavy clutter environments.展开更多
基金supported by the National Natural Science Foundation of China(61871301)the Postdoctoral Science Foundation of China(2018M633470,2020T130494)the Fundamental Research Funds for the Central Universities(XJS210211).
文摘Effective implementation of the fast labeled multi-Bernoulli(FLMB)filter is addressed for target tracking with interval measurements.Firstly,a sequential Monte Carlo(SMC)implementation of the FLMB filter,SMC-FLMB filter,is derived based on generalized likelihood function weighting.Then,a box particle(BP)implementation of the FLMB filter,BP-FLMB filter,is developed,with a computational complexity reduction of the SMC-FLMB filter.Finally,an improved version of the BP-FLMB filter,improved BP-FLMB(IBP-FLMB)filter,is proposed,improving its estimation accuracy and real-time performance under the conditions of low detection probability and high clutter.Simulation results show that the BP-FLMB filter has a great improvement of the real-time performance than the SMC-FLMB filter,with similar tracking performance.Compared with the BP-FLMB filter,the IBP-FLMB filter has better estimation performance and real-time performance under the conditions of low detection probability and high clutter.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(B18039)Shaanxi Youth Fund(202J-JC-QN-0668).
文摘A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of target motions are modeled by using jump Markovian system(JMS),is presented in this paper.The close-form solution is derived for sequential Monte Carlo implementation of the GLMB filter based on the TBD model.In update,we derive a tractable GLMB density,which preserves the cardinality distribution and first-order moment of the labeled multi-target distribution of interest as well as minimizes the Kullback-Leibler divergence(KLD),to enable the next recursive cycle.The relevant simulation results prove that the proposed multiple-model GLMB-TBD(MM-GLMB-TBD)algorithm based on K-distributed clutter model can improve the detecting and tracking performance in both estimation error and robustness compared with state-of-the-art algorithms for sea clutter background.Additionally,the simulations show that the proposed MM-GLMB-TBD algorithm can accurately output the multitarget trajectories with considerably less computational complexity compared with the adapted dynamic programming based TBD(DP-TBD)algorithm.Meanwhile,the simulation results also indicate that the proposed MM-GLMB-TBD filter slightly outperforms the JMS particle filter based TBD(JMSMeMBer-TBD)filter in estimation error with the basically same computational cost.Finally,the impact of the mismatches on the clutter model and clutter parameter is investigated for the performance of the MM-GLMB-TBD filter.
文摘针对标准标签多伯努利(labeled multi-Bernoulli,LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model LMB,MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到了新的预测和更新方程,并给出了算法的序贯蒙特卡罗实现。仿真实验表明,MM-LMB算法能对多机动目标进行有效跟踪,在复杂探测环境下跟踪精度优于多模型概率假设密度(multiple model probability hypothesis density,MM-PHD)算法和多模型势平衡多目标多伯努利(multiple model cardinality balanced multi-target multi-Bernoulli,MM-CBMeMBer)算法;所提算法计算量当目标相距较远时低于MM-PHD和MM-CBMeMBer,目标聚集时增长速度快于对比算法。
文摘针对多传感器协同跟踪目标过程中存在多节点间的信息时间延迟和空间配准偏差问题,提出基于配准偏差和时间延迟的标签多伯努利滤波(labeled multi-Bernoulli based on the registration errors and time delay,LMB-ReDe)算法。首先,通过排队论对节点个数随机变化的网络时间随机延迟进行建模;然后,构建了延迟环境中的非固定周期的目标转移过程和时间延迟过程中的伪量测;最后,在LMB滤波基础上提出LMB-ReDe算法实现目标状态的实时估计。仿真结果表明,在节点数随机变化的多传感器协同探测中,采用LMB-ReDe滤波器跟踪位置精度优于标准的LMB滤波器。
基金supported by the National High Technology Research and Development Program of China (No.2014AA7014061)the National Natural Science Foundation of China (No.61501484)
文摘It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB) approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB) filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD) filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer) filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated.
基金Project supported by the National Major Research and Development Project of China (No. 2018YFE0206500)the National Natural Science Foundation of China (No. 62071140)+1 种基金the International Scientific and Technological Cooperation Program of China (No. 2015DFR10220)the Technology Foundation for Basic Enhancement Plan,China (No. 2021-JCJQ-JJ-0301)。
文摘A novel algorithm that combines the generalized labeled multi-Bernoulli(GLMB) filter with signal features of the unknown emitter is proposed in this paper. In complex electromagnetic environments, emitter features(EFs) are often unknown and time-varying. Aiming at the unknown feature problem, we propose a method for identifying EFs based on dynamic clustering of data fields. Because EFs are time-varying and the probability distribution is unknown, an improved fuzzy C-means algorithm is proposed to calculate the correlation coefficients between the target and measurements, to approximate the EF likelihood function. On this basis, the EF likelihood function is integrated into the recursive GLMB filter process to obtain the new prediction and update equations.Simulation results show that the proposed method can improve the tracking performance of multiple targets,especially in heavy clutter environments.