Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between phy...Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition.展开更多
A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the...A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.展开更多
Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA...Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA).Moreover,the labile SOC fractions play an important role in OC turnover and sequestration.The aims of this study were to determine how different corn straw returning modes affect the contents of labile SOC fractions and OC associated with WSA.Corn straw was returned in the following depths:(1)on undisturbed soil surface(NTS),(2)in the 0–10 cm soil depth(MTS),(3)in the 0–20 cm soil depth(CTS),and(4)no corn straw applied(CK).After five years(2014–2018),soil was sampled in the 0–20 and 20–40 cm depths to measure the water-extractable organic C(WEOC),permanganate oxidizable C(KMnO4-C),light fraction organic C(LFOC),and WSA fractions.The results showed that compared with CK,corn straw amended soils(NTS,MTS and CTS)increased SOC content by 11.55%–16.58%,WEOC by 41.38%–51.42%,KMnO4-C and LFOC by 29.84%–34.09%and 56.68%–65.36%in the 0–40 cm soil depth.The LFOC and KMnO4-C were proved to be the most sensitive fractions to different corn straw returning modes.Compared with CK,soils amended with corn straw increased mean weight diameter by 24.24%–40.48%in the 0–20 cm soil depth.The NTS and MTS preserved more than 60.00%of OC in macro-aggregates compared with CK.No significant difference was found in corn yield across all corn straw returning modes throughout the study period,indicating that adoption of NTS and MTS would increase SOC content and improve soil structure,and would not decline crop production.展开更多
A pot experiment was conducted to research the effect of biochar and wood vinegar on labile phosphorus fractions in saline-alkali soil.There were eight treatments,including CK(0 kg•hm-2 biochar+0 kg•hm-2 wood vinegar)...A pot experiment was conducted to research the effect of biochar and wood vinegar on labile phosphorus fractions in saline-alkali soil.There were eight treatments,including CK(0 kg•hm-2 biochar+0 kg•hm-2 wood vinegar),C1(0.6 t•hm-2 biochar),C2(0.6 t•hm-2 wood vinegar),C3(1.2 t•hm-2 wood vinegar),C4(1.8 t•hm-2 wood vinegar),C5(0.6 t•hm-2 biochar+0.6 t•hm-2 wood vinegar),C6(0.6 t•hm-2 biochar+1.2 t•hm-2 wood vinegar),and C7(0.6 t•hm-2 biochar+1.8 t•hm-2 wood vinegar).The results showed that biochar without wood vinegar and the co-application of biochar and wood vinegar significantly increased soil total phosphorus content.Meanwhile,compared with CK,all of treatments increased resin phosphorus and sodium bicarbonate-extracted inorganic phosphorus(NaHCO3-Pi)contents in saline-alkali soil.Especially,the contents of resin phosphorus and NaHCO3-Pi under C5,C6,and C7 treatments were higher than those of C2,C3,and C4 treatments,respectively,indicating that the increases of labile phosphorus contents under the co-application of biochar and wood vinegar were better than those of the alone application of biochar and wood vinegar.Each treatment increased the proportion of labile phosphorus pool in saline-alkali soil and the proportion of labile phosphorus pool increased with the increase of the amount of wood vinegar.In addition,the application of biochar and wood vinegar increased the 100-grain weight of rice,and C6 treatment had the best effect,increasing the 100-grain weight by 134.35%.Therefore,the application of biochar and wood vinegar in saline-alkali soil could improve the soil phosphorus availability,increase the weight of rice grains,thereby realizing the resource utilization of agricultural waste and the sustainable development of agriculture.展开更多
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont...Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.展开更多
No-tillage(NT)and straw return(S)collectively affect soil organic carbon(SOC).However,changes in the organic carbon pool have been under-investigated.Here,we assessed the quantity and quality of SOC after 11 years of ...No-tillage(NT)and straw return(S)collectively affect soil organic carbon(SOC).However,changes in the organic carbon pool have been under-investigated.Here,we assessed the quantity and quality of SOC after 11 years of tillage and straw return on the North China Plain.Concentrations of SOC and its labile fractions(particulate organic carbon(POC),potassium permanganate-oxidizable organic carbon(POXC),microbial biomass carbon(MBC),and dissolved organic carbon(DOC)),components of DOC by fluorescence spectroscopy combined with parallel factor analysis(PARAFAC),and the chemical composition of SOC by 13C NMR(nuclear magnetic resonance)spectroscopy were explored.Treatments comprised conventional tillage(CT)and NT under straw removal(S0),return of wheat straw only(S1),or return of both wheat straw and maize residue(S2).Straw return significantly increased the concentrations and stocks of SOC at 0–20 cm depth,but NT stratified them with enrichment at 0–10 cm and a decrease at 10–20 cm compared to CT,especially under S2.Labile C fractions showed similar patterns of variation to that of SOC,with POC and POXC more sensitive to straw return and the former more sensitive to tillage.Six fluorescence components of DOC were identified,mainly comprising humic-like substances with smaller amounts of fulvic acid-like substances and tryptophan.Straw return significantly decreased the fluorescence index(FI)and autochthonous index(BIX)and increased the humification index(HIX).No-tillage generally increased HIX in topsoil but decreased it and increased the FI and BIX below the topsoil.Relative abudance order of the chemical composition of SOC was:O-alkyl C>alkylC>aromatic-C>carbonyl-C.Overall,NT under S2 effectively increased SOC and its labile C forms and DOC humification in topsoil and microbially-derived DOC below the topsoil.Return of both wheat and maize straw was a decisive factor in promoting SOC in the plow layer.The stratification of SOC under NT may confer a long-term influence on carbon sequestration.展开更多
Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry. Wheat(Triticum aestivum L.)–maize(Zea mays L.)(W–M) rotation is the dominant planting pattern in the Hu...Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry. Wheat(Triticum aestivum L.)–maize(Zea mays L.)(W–M) rotation is the dominant planting pattern in the Huang-HuaiHai Plain and is important for food security in China. However, the soil quality is deteriorating due to the W–M rotation’s long-term, intensive, and continuous cultivation. Introducing legumes into the W–M rotation system may be an effective way to improve soil quality. In this study, we aimed to verify this hypothesis by exploring efficient planting systems(wheat–peanut(Arachis hypogaea L.)(W–P) rotation and wheat rotated with maize and peanut intercropping(W–M/P)) to achieve higher agricultural production in the Huang-Huai-Hai Plain. Using traditional W–M rotation as the control, we evaluated crop productivity, net returns, soil microorganisms(SMs), and soil organic carbon(SOC) fractions for three consecutive years. The results indicated that wheat yields were significantly increased under W–P and W–M/P(382.5–579.0 and 179.8–513.1 kg ha-1, respectively) compared with W–M. W–P and W–M/P provided significantly higher net returns(58.2 and 70.4%, respectively) than W–M. W–M/P and W–M retained the SOC stock more efficiently than W–P, increasing by 25.46–31.03 and 14.47–27.64%, respectively, in the 0–20 cm soil layer. Compared with W–M, W–M/P improved labile carbon fractions;the sensitivity index of potentially mineralizable carbon, microbial biomass carbon(MBC), and dissolved organic carbon was 31.5, 96.5–157.2, and 17.8% in 20–40, 10–40, and 10–20 cm soil layers, respectively. The bacterial community composition and bacteria function were altered as per the soil depth and planting pattern. W–M/P and W–M exhibited similar bacterial community composition and function in 0–20 and 20–40 cm soil layers. Compared with W–P, a higher abundance of functional genes, namely, contains mobile elements and stress-tolerant, and a lower abundance of genes, namely,potentially pathogenic, were observed in the 10–20 cm soil layer of W–M and the 0–20 cm soil layer of W–M/P. SOC and MBC were the main factors affecting soil bacterial communities, positively correlated with Sphingomonadales and Gemmatimonadales and negatively correlated with Blastocatellales. Organic input was the main factor affecting SOC and SMs, which exhibited feedback effects on crop productivity. In summary, W–M/P improved productivity, net returns, and SOC pool compared with traditional W–M rotation systems, and it is recommended that plant–soil–microbial interactions be considered while designing high-yield cropping systems.展开更多
Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fr...Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area.展开更多
Background:Soil organic carbon(SOC)is important for soil quality and fertility in forest ecosystems.Labile SOC fractions are sensitive to environmental changes,which reflect the impact of short-term internal and exter...Background:Soil organic carbon(SOC)is important for soil quality and fertility in forest ecosystems.Labile SOC fractions are sensitive to environmental changes,which reflect the impact of short-term internal and external management measures on the soil carbon pool.Organic mulching(OM)alters the soil environment and promotes plant growth.However,little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants.Methods:A one-year field experiment with four treatments(OM at 0,5,10,and 20 cm thicknesses)was conducted in a 15-year-old Ligustrum lucidum plantation.Changes in the SOC fractions in the rhizosphere and bulk soil;the carbon content in the plant fine roots,leaves,and organic mulch;and several soil physicochemical properties were measured.The relationships between SOC fractions and the measured variables were analysed.Results:The OM treatments had no significant effect on the SOC fractions,except for the dissolved organic carbon(DOC).OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil.There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon.The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere.The thinnest(5 cm)mulching layers showed the most rapid carbon decomposition over time.The time after OM had the greatest effect on the SOC fractions,followed by soil layer.Conclusions:The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study.OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.展开更多
Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab an...Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab analysis, we studied the seasonal variations, content differences, and interrelationships of total organic carbon (TOC), light fraction organic carbon (LFOC), and particulate organic carbon (POC) of the soil in the forest areas burned with different fire intensities in the Daxing'anling Mountains. The mean TOC content in the low-intensity burned area was greater than that in the unburned area, moderate-intensity, and high-intensity burned areas in June and November (P 〈 0.05). LFOC and POC in the low-intensity burned area were greater than that in either moderate-intensity or high-intensity burned areas, with significant differences in LFOC in September and November (P 〈 0.05). A significant difference in LFOC between the unburned and burned areas was only found in July (P 〈 0.05). However, the differences in POC between the unburned and burned areas were not significant in all the whole seasons (P 〉 0.05). Soil LFOC and POC varied significantly with the seasons (P 〈 0.05) in the Daxing'anling Mountains. Significant linear relationships were observed between soil TOC, LFOC, and POC, which were positively correlated with soil nitrogen and negatively correlated with soil temperature in the Daxing'anling Mountains.展开更多
Labile organic carbon(LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the s...Labile organic carbon(LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the sources and causes of LOC contamination are. In this study, soil organic carbon(SOC), total nitrogen(TN), microbial biomass carbon(MBC), microbial biomass nitrogen(MBN) and LOC were analyzed based on different soil horizons and elevations using turnover time in an experimental site(3700 m to 4300 m area) in Sygera. SOC and LOC in higher-elevation vegetation types were higher than that of in lower-elevation vegetation types. Our results presented that the soil microbial biomass carbon(SMBC) and soil microbial biomass nitrogen(SMBN)were positively correlated with SOC. The content of easily oxidized carbon(EOC), particulate organic carbon(POC) and light fraction organic carbon(LFOC) decreased with depth increasing and the content were the lowest in the 60 cm to 100 cm depth.The total SOC, ROC and POC contents decreased with increasing soil horizons. The SOC, TN, MBC and MBN contents increased with increasing altitude in the Sygera Mountains. The MBC and MBN contents weredifferent with the changes of SOC(p<0.05),meanwhile, both LFOC and POC were related to total SOC(p<0.05). The physical and chemical properties of soil, including temperature, humidity, and altitude,were involved in the regulation of SOC, TN, MBC,MBN and LFOC contents in the Sygera Mountains,Tibetan Plateau.展开更多
Recovery of microbial functions is one of the critical processes in the nutrient cycling of bauxite residue for improving revegetation.Straw is considered to be effective to increase microbial diversity and drive the ...Recovery of microbial functions is one of the critical processes in the nutrient cycling of bauxite residue for improving revegetation.Straw is considered to be effective to increase microbial diversity and drive the development of the microbial community,but its effect on microbial carbon metabolism has not been illustrated.The present study evaluated the effects of phosphogypsum(PG),straw(SF)and phosphogypsum plus straw(PGSF)on physicochemical properties,enzyme activities,and microbial carbon metabolism activities in bauxite residue.After 180 days incubation,PG,SF and PGSF treatment significantly reduced the residue pH from 10.85 to 8.64,9.39 and 8.06,respectively.Compared to CK treatment,SF treatment significantly increased the content of total organic carbon(TOC)and organic carbon fractions(DOC,MBC,EOC,and POC).In addition,straw addition significantly increased glucosidase,cellulose,urease,and alkaline phosphatase by 7.2-9.1 times,5.8-7.1 times,11.1-12.5 times,and 1.1-2.2 times,respectively.The Biolog results showed that straw addition significantly increased microbial metabolic activity(AWCD)and diversity in bauxite residue.Redundancy analysis indicated total nitrogen(TN)and carbon fractions(POC,MBC and DOC)were the most important environmental factors affecting microbial metabolic activity and diversity in bauxite residue.These findings provided us with a biogeochemical perspective to reveal soil formation in bauxite residue and suggested that nutrient supplement and regulation of salinity-alkalinity benefit the establishment of microbial communities and functions in bauxite residue.展开更多
Under the pressure of global droughts and water shortage,it is essential to evolve toward a sustainable and robust water system.One possible avenue is the maximum reuse of treated wastewater,but the quality of which d...Under the pressure of global droughts and water shortage,it is essential to evolve toward a sustainable and robust water system.One possible avenue is the maximum reuse of treated wastewater,but the quality of which determines its reuse.Therefore,inorganic(Cd,Pb,Cr,Ni,Cu,and As)and organic(xenoestrogens and polycyclic aromatic contaminants,PACs)contaminants were monthly monitored in an effluent of the wastewater treatment plant(WWTP),the surrounding surface waters and the local groundwater in Belgium.Dissolved and particulate concentrations of inorganic contaminants in these water bodies were analyzed.In addition,Diffusive Gradients in Thin-films(DGT)was used in situ to obtain bioavailable metal fractions.In the WWTP effluent and surface waters,only Ni exceeds the Annual Average-Environmental Quality Standard(AA-EQS),while in the groundwater,dissolved As was the predominant element.Moreover,in the surface and effluent waters the highest lability degrees were observed for Cd and Ni.The concentrations of these metal species in the effluent water were lower than in the other water bodies.Micro-organic pollutants,xenoestrogens and PACs were analyzed by dual Estrogen and Aryl hydrocarbon Receptor-Chemical Activated LUciferase gene eXpression(ER&AhR-CALUX)assays.Since the annual averaged(AA)bioequivalent concentration of E2(0.18 ng/L)is below the AA-EQS standard(0.4 ng/L),and the bioequivalent concentration of benzo[a]pyrene never exceeded the maximum admissible concentration(MAC),the reclamation and reuse of treated wastewater for groundwater replenishment and agricultural irrigation should pose no environmental problems,at least in a short-term.展开更多
Background:Revealing the variations in soil aggregate-related organic carbon(OC)and labile organic carbon(LOC)fractions in a chronosequence of Chinese fir plantations plays an important role in better understanding th...Background:Revealing the variations in soil aggregate-related organic carbon(OC)and labile organic carbon(LOC)fractions in a chronosequence of Chinese fir plantations plays an important role in better understanding the impact of soil carbon sink or source on the Chinese fir plantation ecosystem.In this study,soil samples in a depth of 0–20 cm were collected from Chinese fir plantations at different stand ages(0,9,17,and 26 years old)in Guangxi,China.With the optimal moisture sieving method adopted,the soil aggregates of 4 different sizes were obtained,including>2-mm,2–1-mm,1–0.25-mm,and<0.25-mm aggregates.Soil OC and LOC fractions were measured in the aggregates of different sizes.The LOC fractions included readily oxidizable carbon(ROC),particulate organic carbon(POC),microbial biomass carbon(MBC),water-soluble organic carbon(WOC),and mineralized organic carbon(MOC).Results:Soil aggregate stability,as indicated by the mean weight diameter(MWD),was the highest in the 17-yearold Chinese fir plantations and was significantly positively related(p<0.05)to the concentrations of OC and LOC fractions(except for the ROC and MOC),with the POC in particular.As for all stand ages of Chinese fir plantations,the concentrations of soil OC and LOC fractions were significantly increased as the aggregate size decreased.Consequently,there were more OC and LOC fractions distributed in the<0.25-mm aggregates.During the stand development,the concentrations of soil OC and LOC fractions first increased and then decreased,with the highest levels detected in the 17-year-old Chinese fir plantations,indicating that the 17-year-old Chinese fir plantations were conducive to the accumulation of soil OC and LOC fractions.Conclusion:After 17 years of planting,promoted soil carbon(especially for the POC)accumulation contributes significantly to enhancing soil aggregate stability for the Chinese fir plantations in Guangxi,China.展开更多
Desorption of zinc (Zn) from soil is an important factor governing Zn concentration in the soil solution and Zn availability to plants. Batch experiments were performed to study the kinetics of Zn desorption by diet...Desorption of zinc (Zn) from soil is an important factor governing Zn concentration in the soil solution and Zn availability to plants. Batch experiments were performed to study the kinetics of Zn desorption by diethylenetriaminepentaacetic acid (DTPA) from 15 calcareous soil samples taken from Golestan Province in northern Iran. Soils were equilibrated with 0.005 mol L-1 DTPA solutions for 0.25 to 192 h. The results showed that the extraction process consisted of rapid extraction in the first 2 h followed by much slower extraction for the remainder of the experiment. Desorption kinetic data was fitted to pseudo-first-order kinetic model. The experimental data were found to deviate from the straight line of the pseudo-first-order plots after 2 h. The model of two first-order reactions was fitted to the kinetic data and allowed to distinguish two pools for Zn: a labile fraction (Q1), quickly extracted with a rate constant kl, and a slowly labile fraction (Q2), more slowly extracted with a rate constant k2. The applicability of pseudo-second-order model in describing the kinetic data of Zn desorntion was also evaluated.展开更多
Mornag Plain is a coastal area of the Mediterranean basin, which has undergone an agricultural industrial boom. The aim of this study was to investigate the different water qualities used for irrigation on heavy metal...Mornag Plain is a coastal area of the Mediterranean basin, which has undergone an agricultural industrial boom. The aim of this study was to investigate the different water qualities used for irrigation on heavy metal mobility in these polluted agricultural soils. The geo-accumulation indices for heavy metals (Ni, Cr, Pb, Cd, Cu, and Zn) revealed that industrial activities and used treated wastewater (TWW) contributed to soil pollution, and water irrigation always decreased this contamination. After long-term use of different water types, high perturbation of heavy metal redistribution has occurred. Groundwater use altered all heavy metal redistributions in the irrigated soil among various soil-solid and soil-solution fractions, as compared to the unirrigated soil. Slight acid water use transferred some metals from different solid phase components into water-soluble and exchangeable fractions. However, TWW use transformed some Ni, Cr, Cd, Cu, and Zn from water-soluble and exchangeable fractions to less labile fractions, particularly into organically bound fractions. Reuse of conventional water within the same soil decreased the whole soil redistribution index values, indicating tendency to return to the pattern of distribution of groundwater-irrigated soil.展开更多
Invasion of an exotic C4 plant Spartina alterniflora has been shown to increase soil organic carbon (SOC) concentrations in native C3 plant-dominated coastal wetlands of China. However, little is known about the eff...Invasion of an exotic C4 plant Spartina alterniflora has been shown to increase soil organic carbon (SOC) concentrations in native C3 plant-dominated coastal wetlands of China. However, little is known about the effects of S. alterniflora invasion on SOC concentrations and fractions in tidal marshes dominated by native C4 plants. In this study, a field experiment was conducted in a tidal marsh dominated by the native C4 plant Cyperus malaccensis in the Minjiang River estuary, China. Concentrations of SOC and liable SOC fractions, dissolved organic carbon (DOG), microbial biomass carbon (MBC), and easily oxidizable carbon (EOC), were measured in the top 50-cm soils of the C. malaccensis community, as well as those of three S. alterniflova communities with an invasion duration of 0-4 years (SA-4), 4-8 years (SA-8), and 8-12 years (SA-12), respectively. Results showed that both SOC stocks in the 50-cm soils and mean SOC concentrations in the surface soils (0-10 cm) of the C. malaccensis community increased with the duration of S. alterniflora invasion, whereas SOC concentrations in the 10-50-cm soils decreased slightly during the initial period of S. alterniflora invasion, before increasing again. The pattern of changes in labile SOC fractions (DOC, MBC, and EOC) with invasion duration was generally similar to that of SOC, while the ratios of labile SOC fractions to total SOC (DOC:SOC, MBC:SOC, and EOC:SOC) decreased significantly with the duration of S. alterniflora invasion. The findings of this study suggest that invasion of the exotic C4 plant S. alternifora into a marsh dominated by the native C4 plant C. malaecensis would enhance SOC sequestration owing to the greater amount of biomass and lower proportion of labile SOC fractions present in the S. alterniflora communities.展开更多
基金Supported by the National Natural Science Foundation of China Project(31770582)。
文摘Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition.
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40231016)
文摘A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.
基金the National Natural Science Foundation of China(42077022)Key Research and Development Program of Jilin Province(20200402098NC).
文摘Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA).Moreover,the labile SOC fractions play an important role in OC turnover and sequestration.The aims of this study were to determine how different corn straw returning modes affect the contents of labile SOC fractions and OC associated with WSA.Corn straw was returned in the following depths:(1)on undisturbed soil surface(NTS),(2)in the 0–10 cm soil depth(MTS),(3)in the 0–20 cm soil depth(CTS),and(4)no corn straw applied(CK).After five years(2014–2018),soil was sampled in the 0–20 and 20–40 cm depths to measure the water-extractable organic C(WEOC),permanganate oxidizable C(KMnO4-C),light fraction organic C(LFOC),and WSA fractions.The results showed that compared with CK,corn straw amended soils(NTS,MTS and CTS)increased SOC content by 11.55%–16.58%,WEOC by 41.38%–51.42%,KMnO4-C and LFOC by 29.84%–34.09%and 56.68%–65.36%in the 0–40 cm soil depth.The LFOC and KMnO4-C were proved to be the most sensitive fractions to different corn straw returning modes.Compared with CK,soils amended with corn straw increased mean weight diameter by 24.24%–40.48%in the 0–20 cm soil depth.The NTS and MTS preserved more than 60.00%of OC in macro-aggregates compared with CK.No significant difference was found in corn yield across all corn straw returning modes throughout the study period,indicating that adoption of NTS and MTS would increase SOC content and improve soil structure,and would not decline crop production.
基金Supported by Funding from Harbin Science and Technology Bureau(2017RAXXJ023)。
文摘A pot experiment was conducted to research the effect of biochar and wood vinegar on labile phosphorus fractions in saline-alkali soil.There were eight treatments,including CK(0 kg•hm-2 biochar+0 kg•hm-2 wood vinegar),C1(0.6 t•hm-2 biochar),C2(0.6 t•hm-2 wood vinegar),C3(1.2 t•hm-2 wood vinegar),C4(1.8 t•hm-2 wood vinegar),C5(0.6 t•hm-2 biochar+0.6 t•hm-2 wood vinegar),C6(0.6 t•hm-2 biochar+1.2 t•hm-2 wood vinegar),and C7(0.6 t•hm-2 biochar+1.8 t•hm-2 wood vinegar).The results showed that biochar without wood vinegar and the co-application of biochar and wood vinegar significantly increased soil total phosphorus content.Meanwhile,compared with CK,all of treatments increased resin phosphorus and sodium bicarbonate-extracted inorganic phosphorus(NaHCO3-Pi)contents in saline-alkali soil.Especially,the contents of resin phosphorus and NaHCO3-Pi under C5,C6,and C7 treatments were higher than those of C2,C3,and C4 treatments,respectively,indicating that the increases of labile phosphorus contents under the co-application of biochar and wood vinegar were better than those of the alone application of biochar and wood vinegar.Each treatment increased the proportion of labile phosphorus pool in saline-alkali soil and the proportion of labile phosphorus pool increased with the increase of the amount of wood vinegar.In addition,the application of biochar and wood vinegar increased the 100-grain weight of rice,and C6 treatment had the best effect,increasing the 100-grain weight by 134.35%.Therefore,the application of biochar and wood vinegar in saline-alkali soil could improve the soil phosphorus availability,increase the weight of rice grains,thereby realizing the resource utilization of agricultural waste and the sustainable development of agriculture.
基金This research was supported by the National Key Research and Development Program of China(2021YFE0101302and2021YFD1901102)the National Natural Science Foundation of China(31801314 and 31901475)。
文摘Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.
基金the National Basic Research Program of China(2015CB150500).
文摘No-tillage(NT)and straw return(S)collectively affect soil organic carbon(SOC).However,changes in the organic carbon pool have been under-investigated.Here,we assessed the quantity and quality of SOC after 11 years of tillage and straw return on the North China Plain.Concentrations of SOC and its labile fractions(particulate organic carbon(POC),potassium permanganate-oxidizable organic carbon(POXC),microbial biomass carbon(MBC),and dissolved organic carbon(DOC)),components of DOC by fluorescence spectroscopy combined with parallel factor analysis(PARAFAC),and the chemical composition of SOC by 13C NMR(nuclear magnetic resonance)spectroscopy were explored.Treatments comprised conventional tillage(CT)and NT under straw removal(S0),return of wheat straw only(S1),or return of both wheat straw and maize residue(S2).Straw return significantly increased the concentrations and stocks of SOC at 0–20 cm depth,but NT stratified them with enrichment at 0–10 cm and a decrease at 10–20 cm compared to CT,especially under S2.Labile C fractions showed similar patterns of variation to that of SOC,with POC and POXC more sensitive to straw return and the former more sensitive to tillage.Six fluorescence components of DOC were identified,mainly comprising humic-like substances with smaller amounts of fulvic acid-like substances and tryptophan.Straw return significantly decreased the fluorescence index(FI)and autochthonous index(BIX)and increased the humification index(HIX).No-tillage generally increased HIX in topsoil but decreased it and increased the FI and BIX below the topsoil.Relative abudance order of the chemical composition of SOC was:O-alkyl C>alkylC>aromatic-C>carbonyl-C.Overall,NT under S2 effectively increased SOC and its labile C forms and DOC humification in topsoil and microbially-derived DOC below the topsoil.Return of both wheat and maize straw was a decisive factor in promoting SOC in the plow layer.The stratification of SOC under NT may confer a long-term influence on carbon sequestration.
基金National Natural Science Foundation of China (42107376)the earmarked fund for China Agriculture Research System (CARS-13)。
文摘Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry. Wheat(Triticum aestivum L.)–maize(Zea mays L.)(W–M) rotation is the dominant planting pattern in the Huang-HuaiHai Plain and is important for food security in China. However, the soil quality is deteriorating due to the W–M rotation’s long-term, intensive, and continuous cultivation. Introducing legumes into the W–M rotation system may be an effective way to improve soil quality. In this study, we aimed to verify this hypothesis by exploring efficient planting systems(wheat–peanut(Arachis hypogaea L.)(W–P) rotation and wheat rotated with maize and peanut intercropping(W–M/P)) to achieve higher agricultural production in the Huang-Huai-Hai Plain. Using traditional W–M rotation as the control, we evaluated crop productivity, net returns, soil microorganisms(SMs), and soil organic carbon(SOC) fractions for three consecutive years. The results indicated that wheat yields were significantly increased under W–P and W–M/P(382.5–579.0 and 179.8–513.1 kg ha-1, respectively) compared with W–M. W–P and W–M/P provided significantly higher net returns(58.2 and 70.4%, respectively) than W–M. W–M/P and W–M retained the SOC stock more efficiently than W–P, increasing by 25.46–31.03 and 14.47–27.64%, respectively, in the 0–20 cm soil layer. Compared with W–M, W–M/P improved labile carbon fractions;the sensitivity index of potentially mineralizable carbon, microbial biomass carbon(MBC), and dissolved organic carbon was 31.5, 96.5–157.2, and 17.8% in 20–40, 10–40, and 10–20 cm soil layers, respectively. The bacterial community composition and bacteria function were altered as per the soil depth and planting pattern. W–M/P and W–M exhibited similar bacterial community composition and function in 0–20 and 20–40 cm soil layers. Compared with W–P, a higher abundance of functional genes, namely, contains mobile elements and stress-tolerant, and a lower abundance of genes, namely,potentially pathogenic, were observed in the 10–20 cm soil layer of W–M and the 0–20 cm soil layer of W–M/P. SOC and MBC were the main factors affecting soil bacterial communities, positively correlated with Sphingomonadales and Gemmatimonadales and negatively correlated with Blastocatellales. Organic input was the main factor affecting SOC and SMs, which exhibited feedback effects on crop productivity. In summary, W–M/P improved productivity, net returns, and SOC pool compared with traditional W–M rotation systems, and it is recommended that plant–soil–microbial interactions be considered while designing high-yield cropping systems.
基金supported by one of Major State Basic Research Development Program (2009CB421302)the Gansu Provincial Natural Science Foundation of China (2008GS01759)
文摘Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFC0502703)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Postgraduate Research&Practice Innovation Program of Jiangsu Province.
文摘Background:Soil organic carbon(SOC)is important for soil quality and fertility in forest ecosystems.Labile SOC fractions are sensitive to environmental changes,which reflect the impact of short-term internal and external management measures on the soil carbon pool.Organic mulching(OM)alters the soil environment and promotes plant growth.However,little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants.Methods:A one-year field experiment with four treatments(OM at 0,5,10,and 20 cm thicknesses)was conducted in a 15-year-old Ligustrum lucidum plantation.Changes in the SOC fractions in the rhizosphere and bulk soil;the carbon content in the plant fine roots,leaves,and organic mulch;and several soil physicochemical properties were measured.The relationships between SOC fractions and the measured variables were analysed.Results:The OM treatments had no significant effect on the SOC fractions,except for the dissolved organic carbon(DOC).OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil.There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon.The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere.The thinnest(5 cm)mulching layers showed the most rapid carbon decomposition over time.The time after OM had the greatest effect on the SOC fractions,followed by soil layer.Conclusions:The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study.OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.
基金supported by the Ministry of Science and Technology project 973(2011CB403203)Youth science foundations in Heilongjiang province(QC2012C003)Youth science foundations in college of forest in Heilingjiang province(201415)
文摘Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab analysis, we studied the seasonal variations, content differences, and interrelationships of total organic carbon (TOC), light fraction organic carbon (LFOC), and particulate organic carbon (POC) of the soil in the forest areas burned with different fire intensities in the Daxing'anling Mountains. The mean TOC content in the low-intensity burned area was greater than that in the unburned area, moderate-intensity, and high-intensity burned areas in June and November (P 〈 0.05). LFOC and POC in the low-intensity burned area were greater than that in either moderate-intensity or high-intensity burned areas, with significant differences in LFOC in September and November (P 〈 0.05). A significant difference in LFOC between the unburned and burned areas was only found in July (P 〈 0.05). However, the differences in POC between the unburned and burned areas were not significant in all the whole seasons (P 〉 0.05). Soil LFOC and POC varied significantly with the seasons (P 〈 0.05) in the Daxing'anling Mountains. Significant linear relationships were observed between soil TOC, LFOC, and POC, which were positively correlated with soil nitrogen and negatively correlated with soil temperature in the Daxing'anling Mountains.
基金supported by CFERN & GENE Award Funds on Ecological Paper
文摘Labile organic carbon(LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the sources and causes of LOC contamination are. In this study, soil organic carbon(SOC), total nitrogen(TN), microbial biomass carbon(MBC), microbial biomass nitrogen(MBN) and LOC were analyzed based on different soil horizons and elevations using turnover time in an experimental site(3700 m to 4300 m area) in Sygera. SOC and LOC in higher-elevation vegetation types were higher than that of in lower-elevation vegetation types. Our results presented that the soil microbial biomass carbon(SMBC) and soil microbial biomass nitrogen(SMBN)were positively correlated with SOC. The content of easily oxidized carbon(EOC), particulate organic carbon(POC) and light fraction organic carbon(LFOC) decreased with depth increasing and the content were the lowest in the 60 cm to 100 cm depth.The total SOC, ROC and POC contents decreased with increasing soil horizons. The SOC, TN, MBC and MBN contents increased with increasing altitude in the Sygera Mountains. The MBC and MBN contents weredifferent with the changes of SOC(p&lt;0.05),meanwhile, both LFOC and POC were related to total SOC(p&lt;0.05). The physical and chemical properties of soil, including temperature, humidity, and altitude,were involved in the regulation of SOC, TN, MBC,MBN and LFOC contents in the Sygera Mountains,Tibetan Plateau.
基金supported by the National Natural Science Foundation of China (Nos.42077379 and 42177391)the Natural Science Foundation of Hunan Province,China (No.2022JJ20060)the Central South University InnovationDriven Research Program (No.2023CXQD065)。
文摘Recovery of microbial functions is one of the critical processes in the nutrient cycling of bauxite residue for improving revegetation.Straw is considered to be effective to increase microbial diversity and drive the development of the microbial community,but its effect on microbial carbon metabolism has not been illustrated.The present study evaluated the effects of phosphogypsum(PG),straw(SF)and phosphogypsum plus straw(PGSF)on physicochemical properties,enzyme activities,and microbial carbon metabolism activities in bauxite residue.After 180 days incubation,PG,SF and PGSF treatment significantly reduced the residue pH from 10.85 to 8.64,9.39 and 8.06,respectively.Compared to CK treatment,SF treatment significantly increased the content of total organic carbon(TOC)and organic carbon fractions(DOC,MBC,EOC,and POC).In addition,straw addition significantly increased glucosidase,cellulose,urease,and alkaline phosphatase by 7.2-9.1 times,5.8-7.1 times,11.1-12.5 times,and 1.1-2.2 times,respectively.The Biolog results showed that straw addition significantly increased microbial metabolic activity(AWCD)and diversity in bauxite residue.Redundancy analysis indicated total nitrogen(TN)and carbon fractions(POC,MBC and DOC)were the most important environmental factors affecting microbial metabolic activity and diversity in bauxite residue.These findings provided us with a biogeochemical perspective to reveal soil formation in bauxite residue and suggested that nutrient supplement and regulation of salinity-alkalinity benefit the establishment of microbial communities and functions in bauxite residue.
基金IRP-17(VUB)for the Ph.D.scholarship of M Luo and D J Vandeputte,CSC Ph.D.scholarship for Y Su,Y Jia,and G Li.Aquafin(RWZI Molenbeersel)is thanked for sampling and SRP-II is also thanked for the support of this study。
文摘Under the pressure of global droughts and water shortage,it is essential to evolve toward a sustainable and robust water system.One possible avenue is the maximum reuse of treated wastewater,but the quality of which determines its reuse.Therefore,inorganic(Cd,Pb,Cr,Ni,Cu,and As)and organic(xenoestrogens and polycyclic aromatic contaminants,PACs)contaminants were monthly monitored in an effluent of the wastewater treatment plant(WWTP),the surrounding surface waters and the local groundwater in Belgium.Dissolved and particulate concentrations of inorganic contaminants in these water bodies were analyzed.In addition,Diffusive Gradients in Thin-films(DGT)was used in situ to obtain bioavailable metal fractions.In the WWTP effluent and surface waters,only Ni exceeds the Annual Average-Environmental Quality Standard(AA-EQS),while in the groundwater,dissolved As was the predominant element.Moreover,in the surface and effluent waters the highest lability degrees were observed for Cd and Ni.The concentrations of these metal species in the effluent water were lower than in the other water bodies.Micro-organic pollutants,xenoestrogens and PACs were analyzed by dual Estrogen and Aryl hydrocarbon Receptor-Chemical Activated LUciferase gene eXpression(ER&AhR-CALUX)assays.Since the annual averaged(AA)bioequivalent concentration of E2(0.18 ng/L)is below the AA-EQS standard(0.4 ng/L),and the bioequivalent concentration of benzo[a]pyrene never exceeded the maximum admissible concentration(MAC),the reclamation and reuse of treated wastewater for groundwater replenishment and agricultural irrigation should pose no environmental problems,at least in a short-term.
基金The National Natural Science Foundation of China(No.31460196)Research Basic Ability Improvement Project of Young and Middle-aged Teachers in Guangxi Universities(No.2021KY0014)financed the present study。
文摘Background:Revealing the variations in soil aggregate-related organic carbon(OC)and labile organic carbon(LOC)fractions in a chronosequence of Chinese fir plantations plays an important role in better understanding the impact of soil carbon sink or source on the Chinese fir plantation ecosystem.In this study,soil samples in a depth of 0–20 cm were collected from Chinese fir plantations at different stand ages(0,9,17,and 26 years old)in Guangxi,China.With the optimal moisture sieving method adopted,the soil aggregates of 4 different sizes were obtained,including>2-mm,2–1-mm,1–0.25-mm,and<0.25-mm aggregates.Soil OC and LOC fractions were measured in the aggregates of different sizes.The LOC fractions included readily oxidizable carbon(ROC),particulate organic carbon(POC),microbial biomass carbon(MBC),water-soluble organic carbon(WOC),and mineralized organic carbon(MOC).Results:Soil aggregate stability,as indicated by the mean weight diameter(MWD),was the highest in the 17-yearold Chinese fir plantations and was significantly positively related(p<0.05)to the concentrations of OC and LOC fractions(except for the ROC and MOC),with the POC in particular.As for all stand ages of Chinese fir plantations,the concentrations of soil OC and LOC fractions were significantly increased as the aggregate size decreased.Consequently,there were more OC and LOC fractions distributed in the<0.25-mm aggregates.During the stand development,the concentrations of soil OC and LOC fractions first increased and then decreased,with the highest levels detected in the 17-year-old Chinese fir plantations,indicating that the 17-year-old Chinese fir plantations were conducive to the accumulation of soil OC and LOC fractions.Conclusion:After 17 years of planting,promoted soil carbon(especially for the POC)accumulation contributes significantly to enhancing soil aggregate stability for the Chinese fir plantations in Guangxi,China.
基金Supported by the Gorgan University of Agricultural Sciences and Natural Resources,Iran
文摘Desorption of zinc (Zn) from soil is an important factor governing Zn concentration in the soil solution and Zn availability to plants. Batch experiments were performed to study the kinetics of Zn desorption by diethylenetriaminepentaacetic acid (DTPA) from 15 calcareous soil samples taken from Golestan Province in northern Iran. Soils were equilibrated with 0.005 mol L-1 DTPA solutions for 0.25 to 192 h. The results showed that the extraction process consisted of rapid extraction in the first 2 h followed by much slower extraction for the remainder of the experiment. Desorption kinetic data was fitted to pseudo-first-order kinetic model. The experimental data were found to deviate from the straight line of the pseudo-first-order plots after 2 h. The model of two first-order reactions was fitted to the kinetic data and allowed to distinguish two pools for Zn: a labile fraction (Q1), quickly extracted with a rate constant kl, and a slowly labile fraction (Q2), more slowly extracted with a rate constant k2. The applicability of pseudo-second-order model in describing the kinetic data of Zn desorntion was also evaluated.
文摘Mornag Plain is a coastal area of the Mediterranean basin, which has undergone an agricultural industrial boom. The aim of this study was to investigate the different water qualities used for irrigation on heavy metal mobility in these polluted agricultural soils. The geo-accumulation indices for heavy metals (Ni, Cr, Pb, Cd, Cu, and Zn) revealed that industrial activities and used treated wastewater (TWW) contributed to soil pollution, and water irrigation always decreased this contamination. After long-term use of different water types, high perturbation of heavy metal redistribution has occurred. Groundwater use altered all heavy metal redistributions in the irrigated soil among various soil-solid and soil-solution fractions, as compared to the unirrigated soil. Slight acid water use transferred some metals from different solid phase components into water-soluble and exchangeable fractions. However, TWW use transformed some Ni, Cr, Cd, Cu, and Zn from water-soluble and exchangeable fractions to less labile fractions, particularly into organically bound fractions. Reuse of conventional water within the same soil decreased the whole soil redistribution index values, indicating tendency to return to the pattern of distribution of groundwater-irrigated soil.
基金supported by the National Natural Science Foundation of China(Nos.31000262 and 41671088)the Program for Innovative Research Team at Fujian Normal University,China(No.IRTL1205)+1 种基金the Research Grants Council of the Hong Kong Special Administrative Region,China(No.CUHK458913)the Chinese University of Hong Kong Direct Grant(No.4052119)
文摘Invasion of an exotic C4 plant Spartina alterniflora has been shown to increase soil organic carbon (SOC) concentrations in native C3 plant-dominated coastal wetlands of China. However, little is known about the effects of S. alterniflora invasion on SOC concentrations and fractions in tidal marshes dominated by native C4 plants. In this study, a field experiment was conducted in a tidal marsh dominated by the native C4 plant Cyperus malaccensis in the Minjiang River estuary, China. Concentrations of SOC and liable SOC fractions, dissolved organic carbon (DOG), microbial biomass carbon (MBC), and easily oxidizable carbon (EOC), were measured in the top 50-cm soils of the C. malaccensis community, as well as those of three S. alterniflova communities with an invasion duration of 0-4 years (SA-4), 4-8 years (SA-8), and 8-12 years (SA-12), respectively. Results showed that both SOC stocks in the 50-cm soils and mean SOC concentrations in the surface soils (0-10 cm) of the C. malaccensis community increased with the duration of S. alterniflora invasion, whereas SOC concentrations in the 10-50-cm soils decreased slightly during the initial period of S. alterniflora invasion, before increasing again. The pattern of changes in labile SOC fractions (DOC, MBC, and EOC) with invasion duration was generally similar to that of SOC, while the ratios of labile SOC fractions to total SOC (DOC:SOC, MBC:SOC, and EOC:SOC) decreased significantly with the duration of S. alterniflora invasion. The findings of this study suggest that invasion of the exotic C4 plant S. alternifora into a marsh dominated by the native C4 plant C. malaecensis would enhance SOC sequestration owing to the greater amount of biomass and lower proportion of labile SOC fractions present in the S. alterniflora communities.