Quantum chemical calculations of the structures and cation-anion interaction of 1-ethyl-3-methylimidazolium lactate ([Emim][LAC]) ion pair at the B3LYP/6-31++G** theoretical level were performed. The relevant geometri...Quantum chemical calculations of the structures and cation-anion interaction of 1-ethyl-3-methylimidazolium lactate ([Emim][LAC]) ion pair at the B3LYP/6-31++G** theoretical level were performed. The relevant geometrical characteristics, energy properties, intermolecular H-bonds (H-bonds), and calculated IR vibrations with respect to isolated ions were systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses were also employed to understand the nature of the interactions between cation and anion. The five most stable geometries were verified by analyzing the relative energies and interaction energies. It was found that the most of the C-H···O intermolecular H-bonds interactions in five stable conformers have some covalent character in nature. The elongation and red shift in IR spectrum of C-H bonds which involve in H-bonds is proved by electron transfers from the lone pairs of the carbonyl O atom of [LAC] to the C-H antibonding orbital of the [Emim]+. The interaction modes are more favorable when the carbonyl O atoms of [LAC] interact with the C2-H of the imidazolium ring and the C-H of the ethyl group through the formation of triple H-bonds.展开更多
基金supported by the National Basic Research Program of China (2009CB219901)the National Natural Scientific Fund of China(21073194, 21106146)
文摘Quantum chemical calculations of the structures and cation-anion interaction of 1-ethyl-3-methylimidazolium lactate ([Emim][LAC]) ion pair at the B3LYP/6-31++G** theoretical level were performed. The relevant geometrical characteristics, energy properties, intermolecular H-bonds (H-bonds), and calculated IR vibrations with respect to isolated ions were systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses were also employed to understand the nature of the interactions between cation and anion. The five most stable geometries were verified by analyzing the relative energies and interaction energies. It was found that the most of the C-H···O intermolecular H-bonds interactions in five stable conformers have some covalent character in nature. The elongation and red shift in IR spectrum of C-H bonds which involve in H-bonds is proved by electron transfers from the lone pairs of the carbonyl O atom of [LAC] to the C-H antibonding orbital of the [Emim]+. The interaction modes are more favorable when the carbonyl O atoms of [LAC] interact with the C2-H of the imidazolium ring and the C-H of the ethyl group through the formation of triple H-bonds.