Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high...Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high levels of residual Li compounds,dissolution of transition metal cations,and parasitic side reactions,have not been effectively addressed,leading to significant degradation in their electrochemical performance.In this study,we propose a simple and effective lactic acid-assisted interface engineering strategy to regulate the surface chemistry and properties of Ni-rich LiNi_(0.8)Co_(0.1)Mr_(0.1)O_(2) cathode.This novel surface treatment method successfully eliminates surface residual Li compounds,inhibits structural collapse,and mitigates cathode-electrolyte interface film growth.As a result,the lactic acidtreated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) achieved a remarkable capacity retention of 91.7% after 100 cycles at 0.5 C(25℃) and outstanding rate capability of 149.5 mA h g^(-1) at 10 C,significantly outperforming the pristine material.Furthermore,a pouch-type full cell incorporating the modified LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode demonstrates impressive long-term cycle life,retaining 81.5% of its capacity after 500 cycles at 1 C.More importantly,the thermal stability of the modified cathode is also dramatically improved.This study offers a valuable surface modification strategy for enhancing the overall performance of Ni-rich cathode materials.展开更多
Suancai is a traditional fermented vegetable widely consumed in Northeast China.In this study,different prebiotics were used to improve the quality of suancai.Four prebiotics(inulin(INU),xylooligosaccharide(XO S),gala...Suancai is a traditional fermented vegetable widely consumed in Northeast China.In this study,different prebiotics were used to improve the quality of suancai.Four prebiotics(inulin(INU),xylooligosaccharide(XO S),galactooligosaccharide(GOS),and stachyose(STA))were shown to reduce the pH value and increase the content of total titratable acidity(TTA)in suancai,while the contents of most organic acids were also increased.The addition of prebiotics had significant effects on the bacterial microbiota during the suancai fermentation process.All prebiotics were shown to contribute to the growth of Lactobacillus.The suancai sample with fructooligosaccharides(FOS)had the highest relative abundance of Lactobacillus.Besides,INU and XOS could increase the abundance of Weissella.To evaluate the quality of suancai fermented with prebiotics,profiles of volatile flavor compounds(VOCs)and free amino acids(FAA)were analyzed.The prebiotics affected the VOCs and FAA profiles via transforming the bacterial microbiota.In addition,the addition of prebiotics also changed the taste profiles of the suancai samples.This study is among the first attempts to reveal the effects of different prebiotics on suancai fermentation,and the findings provide a foundation to develop new ways for improving the quality of suancai.展开更多
Hyperuricemia is a metabolic disorder caused by abnormal purine metabolism,resulting in abnormally high serum uric acid.In this study,a novel Levilactobacillus brevis PDD-5 isolated from salty vegetables was verified ...Hyperuricemia is a metabolic disorder caused by abnormal purine metabolism,resulting in abnormally high serum uric acid.In this study,a novel Levilactobacillus brevis PDD-5 isolated from salty vegetables was verified with the function of alleviating hyperuricemia.The relevant effects of L.brevis PDD-5 in lowering uric acid were analyzed by in vitro and in vivo experiments.The results showed that the L.brevis PDD-5 has(68.86±15.46)%of inosine uptake capacity and(95.75±3.30)%of guanosine uptake capacity in vitro.Oral administration of L.brevis PDD-5 to hyperuricemia rats reduced uric acid,creatinine,and urea nitrogen in serum,as well as decreased inosine and guanosine levels in the intestinal contents of rats.Analysis of relevant markers in the kidney by ELISA kits revealed that L.brevis PDD-5 alleviated oxidative stress and inflammation.Moreover,the gene expression of uric acid transporter 1(URAT1)and glucose transporter 9(GLUT9)was down-regulated,and the gene expression of organic anion transporter 1(OAT1)was up-regulated after treatment with L.brevis PDD-5.Western blot analysis showed that L.brevis PDD-5 alleviated hyperuricemia-induced kidney injury through the NLRP3 pathway.The se findings suggest that L.brevis PDD-5 can lower uric acid,repair kidney damage,and also has the potential to prevent uric acid nephropathy.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ...The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.展开更多
Objective: Abnormal metabolism is the underlying reason for breast cancer progression. Decreased lactate dehydrogenase B(LDHB) has been detected in breast cancer but the function of LDHB remains unknown.Methods: Weste...Objective: Abnormal metabolism is the underlying reason for breast cancer progression. Decreased lactate dehydrogenase B(LDHB) has been detected in breast cancer but the function of LDHB remains unknown.Methods: Western blot was used to analyze LDHB expression in breast cancer cells. The impact of LDHB on tumor cell migration and invasion was determined using Transwell assays, wound healing assays, and a mouse lung metastasis model. Subcutaneous tumor formation, a natural killer(NK) cell cytotoxicity assay, and flow cytometry evaluated NK cell activation. Immunofluorescence and quantitative real-time PCR detected NK cell activation markers. Kaplan-Meier analysis evaluated the effect of immune cell infiltration on prognosis. Single-sample gene set enrichment analysis determined NK cell activation scores. A support vector machine predicted the role of LDHB in NK cell activation.Results: In this study we showed that LDHB inhibits the breast cancer cell metastasis and orchestrates metabolic reprogramming within tumor cells. Our results revealed that LDHB-mediated lactic acid clearance in breast cancer cells triggers NK cell activation within the tumor microenvironment. Our findings, which were confirmed in a murine model, demonstrated that LDHB in tumor cells promotes NK cell activation and ultimately results in the eradication of malignant cells. Clinically, our study further validated that LDHB affects immune cell infiltration and function. Specifically, its expression has been linked to enhanced NK cell-mediated cytotoxicity and improved patient survival. Furthermore, we identified LDHB expression in tumors as an important predictor of NK cell activation, with strong predictive ability in some cancers.Conclusions: Our results suggest that LDHB is a promising target for activating the tumor immune microenvironment in breast cancer, where LDHB-associated lactic acid clearance leads to increased NK cell activity. This study highlights the critical role of LDHB in regulating immune responses and its potential as a therapeutic target for breast cancer.展开更多
Soy polysaccharide(SP)has been reported to possess the properties of modulating gut microbiome diversity.Here,we aimed to explore the protective effects of SP against dextran sulphate sodium(DSS)-induced colitis.Pre-t...Soy polysaccharide(SP)has been reported to possess the properties of modulating gut microbiome diversity.Here,we aimed to explore the protective effects of SP against dextran sulphate sodium(DSS)-induced colitis.Pre-treatment with SP at a dosage of 400 mg/kg·day alleviated colitis symptoms,preventing the weight loss and colon shorten.SP suppressed DSS-induced inflammatory response and enhanced M1 to M2 macrophage polarization.Further investigation showed that SP significantly promoted the regeneration of crypt and the expansion of goblet cell production.In addition,bacterial 16S rRNA sequencing analysis showed that SP modulated the composition of fecal microbiota,including selectively increasing Lactobacillus relative abundance.Notably,SP treatment enriched the production of Lactobacillus-derived lactic acid,which was sensed by its specific G-protein-coupled receptor 81(Gpr81)/Wnt3/β-catenin signaling,and promoted the regeneration of intestinal stem cells.Fecal microbiome transplantation demonstrated that intestinal flora partially contributed to the beneficial effects of SP on preventing against colitis.In conclusion,SP exhibited the protective effects against colitis,which could be partly associated with modulating the composition of gut microbiota and enrichment of lactic acid.This study suggests that SP has potential to be developed as nutritional intervention to prevent colitis.展开更多
The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sau...The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB.展开更多
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited...In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.展开更多
Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lac...Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.展开更多
Intracellular communications between breast cancer and fibroblast cells were reported to be involved in cancer proliferation,growth,and therapy resitance.The hallmarks of cancer fibroblast interactions,consisting of c...Intracellular communications between breast cancer and fibroblast cells were reported to be involved in cancer proliferation,growth,and therapy resitance.The hallmarks of cancer fibroblast interactions,consisting of caveolin 1(Cav1)and mono-carboxylate ransporter 4(MCT4)(metabolic coupling markers),along with IL-6,TGFB,and lactate secretion,are considered robust biomarkers predicting recurrence and metastasis.In order to promote a novel phenotype in normal fibroblasts,we predicted that breast cancer cells could be able to cause loss of Cavl and increase of MCT4,as well as elevate IL 6 and TGF in nearby nomal fibroblasts.We created a co culture model using breast cancer(4T1)and normal fibroblast(NIH3T3)cell lines cultured under specific experimental conditions in order to directly test our theory.Moreover,we show that long-term co-culture of breast cancer cells and normal fibroblasts promotes loss of Cavl and gain of MCT4 in adjacent fibroblasts and increase lactate secretion.These results were validated using the monoculture of each group separately as a control.In this system,we show that me tformin inhibits IL-6 and TGFB secretion and re expresses Cavl in both cells.However,MCT4 and lactate stayed high after treatment with metformin.In conclusion,our work shows that co-culture with breast cancer cells may cause signifcant alterations in the phenotype and secretion of normal fibroblasts.Metformin,however,may change this state and affect fibroblasts'acquired phenotypes.Moreover,mitochondrial inhibition by metformin after 8 days of treatment,signi ficantly hinders tumor growth in mouse model of breast cancer.展开更多
Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransfor...Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransformation of nutrients occurs,resulting in notable changes to proteins,carbohydrates,fats,vitamins,and minerals.Each nutrient undergoes specific transformations,providing various advantages for human health.Proteins undergo hydrolysis to produce small molecular weight peptides and amino acids that are more easily digested and absorbed by the human body.Carbohydrates break down to improve the digestibility and absorption of cereals and lower the glycemic index.Fatty acids experience oxidation to produce new substances with health benefits.Additionally,the application of sourdough fermentation can enhance the texture,flavor,and nutritional value of cereal foods while also extending their shelf life and improving food safety.In conclusion,sourdough fermentation has a broad range of applications in cereal food processing.Further research is encouraged to investigate the mechanisms and processes of sourdough fermentation to develop even more nutritious,healthy,and flavorful cereal-based foods.展开更多
Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but...Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).展开更多
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally re...The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally relies on the isolation and identification of pure colonies.While this method is well-established and widely used,it is not without limitations.The subjective judgment inherent in the isolation and purification process introduces potential for error,and the incomplete nature of the isolation process can result in the loss of valuable information.The advent of next generation sequencing has provided a novel approach to the rapid identification of lactic acid bacteria.This technology offers several advantages,including rapidity,accuracy,high throughput,and low cost.Next generation sequencing represents a significant advancement in the field of DNA sequencing.Its ability to rapidly and accurately identify lactic acid bacteria strains in samples with insufficient information or in the presence of multiple lactic acid bacteria sets it apart as a valuable tool.The application of this technology not only circumvents the potential errors inherent in the traditional method but also provides a robust foundation for the expeditious identification of lactic acid bacteria strains and the authentication of bacterial powder in industrial applications.This paper commences with an overview of traditional and molecular biology methods for the identification of lactic acid bacteria.While each method has its own advantages,they are not without limitations in practical application.Subsequently,the paper provides an introduction of the principle,process,advantages,and disadvantages of next generation sequencing,and also details its application in strain identification and rapid identification of lactic acid bacteria.The objective of this study is to provide a comprehensive and reliable basis for the rapid identification of industrial lactic acid bacteria strains and the authenticity identification of bacterial powder.展开更多
Biguanides,such as metformin,have long been established as frontline medications for the management of type 2 diabetes due to their glucose-lowering effects and favorable safety profiles.However,concerns regarding the...Biguanides,such as metformin,have long been established as frontline medications for the management of type 2 diabetes due to their glucose-lowering effects and favorable safety profiles.However,concerns regarding the risk of lactic acidosis associated with biguanide use have sparked considerable debate and scrutiny.This research article aims to provide a comprehensive analysis of the relationship between biguanides,particularly metformin,and lactic acidosis.We delve into the underlying mechanisms,epidemiological evidence,risk factors,clinical manifestations,diagnostic considerations,and management strategies related to biguanide-induced lactic acidosis.Additionally,we explore recent research developments,controversies,and future directions in this critical area of pharmacovigilance and clinical practice.展开更多
Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio sig...Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio significantly affected the catalytic performance. The corresponding lactic acid selectivity was in the order of LiOH〉NaOH〉KOH〉Ba(OH)2. An increase in LiOH/glycerol molar ratio ele‐vated the glycerol conversion and lactic acid selectivity to some degree, but excess LiOH inhibited the transformation of glycerol to lactic acid. In the presence of Pt/AC catalyst, the maximum selec‐tivity of lactic acid was 69.3% at a glycerol conversion of 100% after 6 h at 90 °C, with a Li‐OH/glycerol molar ratio of 1.5. The Pt/AC catalyst was recycled five times and was found to exhibit slightly decreased glycerol conversion and stable lactic acid selectivity. In addition, the experimental results indicated that reaction intermediate dihydroxyacetone was more favorable as the starting reagent for lactic acid formation than glyceraldehyde. However, the Pt/AC catalyst had adverse effects on the intermediate transformation to lactic acid, because it favored the catalytic oxidation of them to glyceric acid.展开更多
基金This work was supported by the Anhui Provincial Natural Science Foundation(Grant No.2308085QB69)the Institute of Energy,Hefei Comprehensive National Science Center(Grant No.21KZS210).
文摘Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high levels of residual Li compounds,dissolution of transition metal cations,and parasitic side reactions,have not been effectively addressed,leading to significant degradation in their electrochemical performance.In this study,we propose a simple and effective lactic acid-assisted interface engineering strategy to regulate the surface chemistry and properties of Ni-rich LiNi_(0.8)Co_(0.1)Mr_(0.1)O_(2) cathode.This novel surface treatment method successfully eliminates surface residual Li compounds,inhibits structural collapse,and mitigates cathode-electrolyte interface film growth.As a result,the lactic acidtreated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) achieved a remarkable capacity retention of 91.7% after 100 cycles at 0.5 C(25℃) and outstanding rate capability of 149.5 mA h g^(-1) at 10 C,significantly outperforming the pristine material.Furthermore,a pouch-type full cell incorporating the modified LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode demonstrates impressive long-term cycle life,retaining 81.5% of its capacity after 500 cycles at 1 C.More importantly,the thermal stability of the modified cathode is also dramatically improved.This study offers a valuable surface modification strategy for enhancing the overall performance of Ni-rich cathode materials.
基金supported by National Natural Science Foundation of China (31901809)the Doctoral Research Start-up Fund of Dalian Polytechnic University (6102072007)。
文摘Suancai is a traditional fermented vegetable widely consumed in Northeast China.In this study,different prebiotics were used to improve the quality of suancai.Four prebiotics(inulin(INU),xylooligosaccharide(XO S),galactooligosaccharide(GOS),and stachyose(STA))were shown to reduce the pH value and increase the content of total titratable acidity(TTA)in suancai,while the contents of most organic acids were also increased.The addition of prebiotics had significant effects on the bacterial microbiota during the suancai fermentation process.All prebiotics were shown to contribute to the growth of Lactobacillus.The suancai sample with fructooligosaccharides(FOS)had the highest relative abundance of Lactobacillus.Besides,INU and XOS could increase the abundance of Weissella.To evaluate the quality of suancai fermented with prebiotics,profiles of volatile flavor compounds(VOCs)and free amino acids(FAA)were analyzed.The prebiotics affected the VOCs and FAA profiles via transforming the bacterial microbiota.In addition,the addition of prebiotics also changed the taste profiles of the suancai samples.This study is among the first attempts to reveal the effects of different prebiotics on suancai fermentation,and the findings provide a foundation to develop new ways for improving the quality of suancai.
基金the National Natural Science Foundation of China(31972048,32272339)the National Key R&D Program of China(2021YFD2100104)for financial support。
文摘Hyperuricemia is a metabolic disorder caused by abnormal purine metabolism,resulting in abnormally high serum uric acid.In this study,a novel Levilactobacillus brevis PDD-5 isolated from salty vegetables was verified with the function of alleviating hyperuricemia.The relevant effects of L.brevis PDD-5 in lowering uric acid were analyzed by in vitro and in vivo experiments.The results showed that the L.brevis PDD-5 has(68.86±15.46)%of inosine uptake capacity and(95.75±3.30)%of guanosine uptake capacity in vitro.Oral administration of L.brevis PDD-5 to hyperuricemia rats reduced uric acid,creatinine,and urea nitrogen in serum,as well as decreased inosine and guanosine levels in the intestinal contents of rats.Analysis of relevant markers in the kidney by ELISA kits revealed that L.brevis PDD-5 alleviated oxidative stress and inflammation.Moreover,the gene expression of uric acid transporter 1(URAT1)and glucose transporter 9(GLUT9)was down-regulated,and the gene expression of organic anion transporter 1(OAT1)was up-regulated after treatment with L.brevis PDD-5.Western blot analysis showed that L.brevis PDD-5 alleviated hyperuricemia-induced kidney injury through the NLRP3 pathway.The se findings suggest that L.brevis PDD-5 can lower uric acid,repair kidney damage,and also has the potential to prevent uric acid nephropathy.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金financially supported by the National Key R&D Program of China (2021YFA1501700)the National Science Foundation of China (22272114)+4 种基金the Fundamental Research Funds from Sichuan University (2022SCUNL103)the Funding for Hundred Talent Program of Sichuan University (20822041E4079)the NSFC (22102018 and 52171201)the Huzhou Science and Technology Bureau (2022GZ45)the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005)。
文摘The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.
基金supported by the Shenzhen Science and Technology Program (Grant no. JCYJ20230807090459001)the Joint Research Fund of the National Science Fund of China Science and Technology Development Fund of Macao SAR (No. 32161160303 for NSFC and No. 0010/2021/AFJ for FDCT)the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University (Grant no. ZNJC202330)。
文摘Objective: Abnormal metabolism is the underlying reason for breast cancer progression. Decreased lactate dehydrogenase B(LDHB) has been detected in breast cancer but the function of LDHB remains unknown.Methods: Western blot was used to analyze LDHB expression in breast cancer cells. The impact of LDHB on tumor cell migration and invasion was determined using Transwell assays, wound healing assays, and a mouse lung metastasis model. Subcutaneous tumor formation, a natural killer(NK) cell cytotoxicity assay, and flow cytometry evaluated NK cell activation. Immunofluorescence and quantitative real-time PCR detected NK cell activation markers. Kaplan-Meier analysis evaluated the effect of immune cell infiltration on prognosis. Single-sample gene set enrichment analysis determined NK cell activation scores. A support vector machine predicted the role of LDHB in NK cell activation.Results: In this study we showed that LDHB inhibits the breast cancer cell metastasis and orchestrates metabolic reprogramming within tumor cells. Our results revealed that LDHB-mediated lactic acid clearance in breast cancer cells triggers NK cell activation within the tumor microenvironment. Our findings, which were confirmed in a murine model, demonstrated that LDHB in tumor cells promotes NK cell activation and ultimately results in the eradication of malignant cells. Clinically, our study further validated that LDHB affects immune cell infiltration and function. Specifically, its expression has been linked to enhanced NK cell-mediated cytotoxicity and improved patient survival. Furthermore, we identified LDHB expression in tumors as an important predictor of NK cell activation, with strong predictive ability in some cancers.Conclusions: Our results suggest that LDHB is a promising target for activating the tumor immune microenvironment in breast cancer, where LDHB-associated lactic acid clearance leads to increased NK cell activity. This study highlights the critical role of LDHB in regulating immune responses and its potential as a therapeutic target for breast cancer.
基金funded by National Natural Science Foundation of China(NSFC32372350)the Knowledge Innovation Program Funding of Institute of Food Science and Technology(CAASASTIP2021-IFST)+1 种基金China Agriculture Research System(CARS-04)Agricultural Science and Technology Innovation Program of Institute of Food Science and Technology,Chinese Academy of Agricultural Sciences(CAAS-ASTIP-G2022-IFST-06).
文摘Soy polysaccharide(SP)has been reported to possess the properties of modulating gut microbiome diversity.Here,we aimed to explore the protective effects of SP against dextran sulphate sodium(DSS)-induced colitis.Pre-treatment with SP at a dosage of 400 mg/kg·day alleviated colitis symptoms,preventing the weight loss and colon shorten.SP suppressed DSS-induced inflammatory response and enhanced M1 to M2 macrophage polarization.Further investigation showed that SP significantly promoted the regeneration of crypt and the expansion of goblet cell production.In addition,bacterial 16S rRNA sequencing analysis showed that SP modulated the composition of fecal microbiota,including selectively increasing Lactobacillus relative abundance.Notably,SP treatment enriched the production of Lactobacillus-derived lactic acid,which was sensed by its specific G-protein-coupled receptor 81(Gpr81)/Wnt3/β-catenin signaling,and promoted the regeneration of intestinal stem cells.Fecal microbiome transplantation demonstrated that intestinal flora partially contributed to the beneficial effects of SP on preventing against colitis.In conclusion,SP exhibited the protective effects against colitis,which could be partly associated with modulating the composition of gut microbiota and enrichment of lactic acid.This study suggests that SP has potential to be developed as nutritional intervention to prevent colitis.
基金funded by the National Natural Science Foundation of China(32172232 and 31771990)the Major Science and Technology Projects of Heilongjiang Province(2021ZX12B05).
文摘The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB.
基金supported by the National Natural Science Foundation of China(32371407,82160421)the Natural Science Foundation of Jiangsu Province(BK20211322)。
文摘In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.
基金supported by the National Natural Science Foundation of China(32102605)the Agricultural Science and Technology Innovation Program under Grant(CAAS-ASTIP-2020-IAR)。
文摘Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.
基金the National Institute for Medical Research Development(NIMADGrant No.995813).
文摘Intracellular communications between breast cancer and fibroblast cells were reported to be involved in cancer proliferation,growth,and therapy resitance.The hallmarks of cancer fibroblast interactions,consisting of caveolin 1(Cav1)and mono-carboxylate ransporter 4(MCT4)(metabolic coupling markers),along with IL-6,TGFB,and lactate secretion,are considered robust biomarkers predicting recurrence and metastasis.In order to promote a novel phenotype in normal fibroblasts,we predicted that breast cancer cells could be able to cause loss of Cavl and increase of MCT4,as well as elevate IL 6 and TGF in nearby nomal fibroblasts.We created a co culture model using breast cancer(4T1)and normal fibroblast(NIH3T3)cell lines cultured under specific experimental conditions in order to directly test our theory.Moreover,we show that long-term co-culture of breast cancer cells and normal fibroblasts promotes loss of Cavl and gain of MCT4 in adjacent fibroblasts and increase lactate secretion.These results were validated using the monoculture of each group separately as a control.In this system,we show that me tformin inhibits IL-6 and TGFB secretion and re expresses Cavl in both cells.However,MCT4 and lactate stayed high after treatment with metformin.In conclusion,our work shows that co-culture with breast cancer cells may cause signifcant alterations in the phenotype and secretion of normal fibroblasts.Metformin,however,may change this state and affect fibroblasts'acquired phenotypes.Moreover,mitochondrial inhibition by metformin after 8 days of treatment,signi ficantly hinders tumor growth in mouse model of breast cancer.
基金supported by the Graduate Education Innovation and Quality Improvement Project of Henan University(No.SYLYC2023185).
文摘Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransformation of nutrients occurs,resulting in notable changes to proteins,carbohydrates,fats,vitamins,and minerals.Each nutrient undergoes specific transformations,providing various advantages for human health.Proteins undergo hydrolysis to produce small molecular weight peptides and amino acids that are more easily digested and absorbed by the human body.Carbohydrates break down to improve the digestibility and absorption of cereals and lower the glycemic index.Fatty acids experience oxidation to produce new substances with health benefits.Additionally,the application of sourdough fermentation can enhance the texture,flavor,and nutritional value of cereal foods while also extending their shelf life and improving food safety.In conclusion,sourdough fermentation has a broad range of applications in cereal food processing.Further research is encouraged to investigate the mechanisms and processes of sourdough fermentation to develop even more nutritious,healthy,and flavorful cereal-based foods.
基金provided by the Jiangsu Provincial Key Research and Development Program (Grant No. BE2022362)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
基金Supported by Special Project of"Grassland Talents"in Inner Mongolia.
文摘The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally relies on the isolation and identification of pure colonies.While this method is well-established and widely used,it is not without limitations.The subjective judgment inherent in the isolation and purification process introduces potential for error,and the incomplete nature of the isolation process can result in the loss of valuable information.The advent of next generation sequencing has provided a novel approach to the rapid identification of lactic acid bacteria.This technology offers several advantages,including rapidity,accuracy,high throughput,and low cost.Next generation sequencing represents a significant advancement in the field of DNA sequencing.Its ability to rapidly and accurately identify lactic acid bacteria strains in samples with insufficient information or in the presence of multiple lactic acid bacteria sets it apart as a valuable tool.The application of this technology not only circumvents the potential errors inherent in the traditional method but also provides a robust foundation for the expeditious identification of lactic acid bacteria strains and the authentication of bacterial powder in industrial applications.This paper commences with an overview of traditional and molecular biology methods for the identification of lactic acid bacteria.While each method has its own advantages,they are not without limitations in practical application.Subsequently,the paper provides an introduction of the principle,process,advantages,and disadvantages of next generation sequencing,and also details its application in strain identification and rapid identification of lactic acid bacteria.The objective of this study is to provide a comprehensive and reliable basis for the rapid identification of industrial lactic acid bacteria strains and the authenticity identification of bacterial powder.
文摘Biguanides,such as metformin,have long been established as frontline medications for the management of type 2 diabetes due to their glucose-lowering effects and favorable safety profiles.However,concerns regarding the risk of lactic acidosis associated with biguanide use have sparked considerable debate and scrutiny.This research article aims to provide a comprehensive analysis of the relationship between biguanides,particularly metformin,and lactic acidosis.We delve into the underlying mechanisms,epidemiological evidence,risk factors,clinical manifestations,diagnostic considerations,and management strategies related to biguanide-induced lactic acidosis.Additionally,we explore recent research developments,controversies,and future directions in this critical area of pharmacovigilance and clinical practice.
基金supported by the National Natural Science Foundation of China(21176236)~~
文摘Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio significantly affected the catalytic performance. The corresponding lactic acid selectivity was in the order of LiOH〉NaOH〉KOH〉Ba(OH)2. An increase in LiOH/glycerol molar ratio ele‐vated the glycerol conversion and lactic acid selectivity to some degree, but excess LiOH inhibited the transformation of glycerol to lactic acid. In the presence of Pt/AC catalyst, the maximum selec‐tivity of lactic acid was 69.3% at a glycerol conversion of 100% after 6 h at 90 °C, with a Li‐OH/glycerol molar ratio of 1.5. The Pt/AC catalyst was recycled five times and was found to exhibit slightly decreased glycerol conversion and stable lactic acid selectivity. In addition, the experimental results indicated that reaction intermediate dihydroxyacetone was more favorable as the starting reagent for lactic acid formation than glyceraldehyde. However, the Pt/AC catalyst had adverse effects on the intermediate transformation to lactic acid, because it favored the catalytic oxidation of them to glyceric acid.