A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of Ch...A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of China and the determined oilfield in-situ stresses is more accurate than that based on one single method.展开更多
As mining delves deeper into the crust, it is necessary to investigate the complex rock responses associated with higher stress gradients. Therefore, it is essential to better understand the mechanisms associated with...As mining delves deeper into the crust, it is necessary to investigate the complex rock responses associated with higher stress gradients. Therefore, it is essential to better understand the mechanisms associated with the rockburst phenomenon. However, due to the large-scale and difficult monitoring of real mining excavations, laboratory scale tests must be utilised to determine the conditions conducive to burst. To this end, this research focuses on the implementation of a new rockburst testing apparatus to replicate the stress conditions of a rock mass excavation at the time of bursting. This apparatus allows the determination of rockburst stresses and a relationship between deviatoric stress and in-situ pressure/depth. Using this relationship it is then possible to estimate the standardised stress levels for a certain rock type which might lead to rockburst occurrence. Furthermore, it is demonstrated that with increasing in-situ pressure, the likelihood(measured as a lower differential stress) and the extent(indicated by the increasing range of deviatoric stress) of rockburst increases. These findings provide valuable information about the conditions necessary for bursting in deep mining.展开更多
目的研究装配式混凝土阶梯钢板式节点的应力应变分布规律,提出一种装配式混凝土阶梯钢板式节点.方法以混凝土强度和穿心板厚度为参数制作装配式混凝土阶梯钢板式节点,以节点试件的外加梁其两端加载点的竖向荷载和位移、节点的核心区柱...目的研究装配式混凝土阶梯钢板式节点的应力应变分布规律,提出一种装配式混凝土阶梯钢板式节点.方法以混凝土强度和穿心板厚度为参数制作装配式混凝土阶梯钢板式节点,以节点试件的外加梁其两端加载点的竖向荷载和位移、节点的核心区柱应力分布、节点核心区穿心钢板应力分布以及外加梁的应力分布等作为主要量测内容.对试件进行低周往复加载试验.结果穿心钢板的应变大多表现为横向应力应变远大于纵向应力应变,外加梁上梯段钢筋的应变远大于其下梯段钢筋的应变.在其他参数不变的情况下,装配式混凝土阶梯钢板式节点的混凝土强度越高则其主要受力部位的应力应变越小;穿心钢板越厚其主要受力部位的应力应变就越小;节点试件的承载力随混凝土强度提高而增大.其中极限荷载在混凝土强度C20时为110.5 k N,C40则达到228.94 k N,较C20提高107.2%.结论提出的装配式混凝土结构梁柱节点构造具有较好的应用价值,为今后预制装配式混凝土结构深入研究及推广提供试验与理论基础.展开更多
The deformation behavior ofβ-quenched nearβTi-5321(Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe)alloy was systematically studied using in-situ tensile test monitored by the scanning electron microscopy(SEM).Besides,the electron ba...The deformation behavior ofβ-quenched nearβTi-5321(Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe)alloy was systematically studied using in-situ tensile test monitored by the scanning electron microscopy(SEM).Besides,the electron backscatter diffraction(EBSD)was performed to thoroughly discuss the deformation mechanisms.The results indicated that slip activities,crystal rotation and stress induced martensite transformation were the major deformation mechanisms in theβ-quenched Ti-5321 alloy during in-situ tensile testing.The slip activities were investigated by using the EBSD-trace analysis,which demonstrated that{110}<111>,{112}<111>and{123}<111>slip systems were activated and the{110}<111>slip system dominated.Besides,βgrains rotated about 7.8°to accommodate the increased macrostrain.Notably,the stress induced martensiteα″which was related to the double yielding behavior during tensile process exhibited multiple characteristics.The differentα″variants divided theβmatrix into smallerβblocks with a typical zigzag morphology,in which oneα″variant passed through another one by deflecting its initial growth direction.Moreover,the deformation twinning in martensiteα″and slip bands cutting through martensiteα″effectively accommodated the local strain.These systematically analysis can provide insightful information about the deformation mechanisms in nearβtitanium alloys.展开更多
The failure of thin film-substrate structure occurs mainly at the thin film or the interface. However, the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because...The failure of thin film-substrate structure occurs mainly at the thin film or the interface. However, the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because there are some complex effects of such as size, interface and stress state on the failure behavior of thin film-substrate structure. Based on the scanning electron microscope (SEM) in-situ in- vestigation on the failure models of the Cu thin film-substrate structure and the nano scratched testing results, the failure stresses in different thicknesses of the Cu film-substrate were characterized, which were compared and confirmed by other methods, such as Stoney formula and other empiric equations. These results indicate that the novel estimating method of failure stress in thin film based on the critical wavelength of surface unstable analysis is better than other methods. The main reason is that the novel estimating method of failure stress in meso thickness film fully considered the effect factors of free surface unstable behavior and elastic anisotropy of thin film. Therefore, the novel estimating method of failure stress assists people to understand the critical interfacial strength and to set up the failure criterion of thin film-substrate structure.展开更多
文摘A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of China and the determined oilfield in-situ stresses is more accurate than that based on one single method.
基金the Australian Research Council (No.LP150100539)
文摘As mining delves deeper into the crust, it is necessary to investigate the complex rock responses associated with higher stress gradients. Therefore, it is essential to better understand the mechanisms associated with the rockburst phenomenon. However, due to the large-scale and difficult monitoring of real mining excavations, laboratory scale tests must be utilised to determine the conditions conducive to burst. To this end, this research focuses on the implementation of a new rockburst testing apparatus to replicate the stress conditions of a rock mass excavation at the time of bursting. This apparatus allows the determination of rockburst stresses and a relationship between deviatoric stress and in-situ pressure/depth. Using this relationship it is then possible to estimate the standardised stress levels for a certain rock type which might lead to rockburst occurrence. Furthermore, it is demonstrated that with increasing in-situ pressure, the likelihood(measured as a lower differential stress) and the extent(indicated by the increasing range of deviatoric stress) of rockburst increases. These findings provide valuable information about the conditions necessary for bursting in deep mining.
文摘目的研究装配式混凝土阶梯钢板式节点的应力应变分布规律,提出一种装配式混凝土阶梯钢板式节点.方法以混凝土强度和穿心板厚度为参数制作装配式混凝土阶梯钢板式节点,以节点试件的外加梁其两端加载点的竖向荷载和位移、节点的核心区柱应力分布、节点核心区穿心钢板应力分布以及外加梁的应力分布等作为主要量测内容.对试件进行低周往复加载试验.结果穿心钢板的应变大多表现为横向应力应变远大于纵向应力应变,外加梁上梯段钢筋的应变远大于其下梯段钢筋的应变.在其他参数不变的情况下,装配式混凝土阶梯钢板式节点的混凝土强度越高则其主要受力部位的应力应变越小;穿心钢板越厚其主要受力部位的应力应变就越小;节点试件的承载力随混凝土强度提高而增大.其中极限荷载在混凝土强度C20时为110.5 k N,C40则达到228.94 k N,较C20提高107.2%.结论提出的装配式混凝土结构梁柱节点构造具有较好的应用价值,为今后预制装配式混凝土结构深入研究及推广提供试验与理论基础.
基金financially supported by the National International Science and Technology Cooperation Project of China(No.2015DF151430)。
文摘The deformation behavior ofβ-quenched nearβTi-5321(Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe)alloy was systematically studied using in-situ tensile test monitored by the scanning electron microscopy(SEM).Besides,the electron backscatter diffraction(EBSD)was performed to thoroughly discuss the deformation mechanisms.The results indicated that slip activities,crystal rotation and stress induced martensite transformation were the major deformation mechanisms in theβ-quenched Ti-5321 alloy during in-situ tensile testing.The slip activities were investigated by using the EBSD-trace analysis,which demonstrated that{110}<111>,{112}<111>and{123}<111>slip systems were activated and the{110}<111>slip system dominated.Besides,βgrains rotated about 7.8°to accommodate the increased macrostrain.Notably,the stress induced martensiteα″which was related to the double yielding behavior during tensile process exhibited multiple characteristics.The differentα″variants divided theβmatrix into smallerβblocks with a typical zigzag morphology,in which oneα″variant passed through another one by deflecting its initial growth direction.Moreover,the deformation twinning in martensiteα″and slip bands cutting through martensiteα″effectively accommodated the local strain.These systematically analysis can provide insightful information about the deformation mechanisms in nearβtitanium alloys.
基金Supported by the National Natural Science Foundation of China (Grant No. 10772091) National Basic Research Program of China (Grant Nos. 2004CB619304-5, 2007CB936803)
文摘The failure of thin film-substrate structure occurs mainly at the thin film or the interface. However, the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because there are some complex effects of such as size, interface and stress state on the failure behavior of thin film-substrate structure. Based on the scanning electron microscope (SEM) in-situ in- vestigation on the failure models of the Cu thin film-substrate structure and the nano scratched testing results, the failure stresses in different thicknesses of the Cu film-substrate were characterized, which were compared and confirmed by other methods, such as Stoney formula and other empiric equations. These results indicate that the novel estimating method of failure stress in thin film based on the critical wavelength of surface unstable analysis is better than other methods. The main reason is that the novel estimating method of failure stress in meso thickness film fully considered the effect factors of free surface unstable behavior and elastic anisotropy of thin film. Therefore, the novel estimating method of failure stress assists people to understand the critical interfacial strength and to set up the failure criterion of thin film-substrate structure.