We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by t...We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.展开更多
Objective:To analyze the feasibility of adopting a combined ladder and case teaching method in otolaryngology nursing teaching.Method:Nursing students in the otolaryngology department were selected.According to the ad...Objective:To analyze the feasibility of adopting a combined ladder and case teaching method in otolaryngology nursing teaching.Method:Nursing students in the otolaryngology department were selected.According to the admission time of nursing students,30 nursing students formed a control group(conventional nursing teaching),and 30 nursing students who were admitted later formed an observation group(ladder and case teaching method).The learning performance and teaching effectiveness of nursing students under different teaching methods were analyzed.Result:The academic performance and teaching effectiveness of the observation group were higher than those of the control group(P<0.05).Conclusion:The implementation of the ladder and case teaching method during the teaching of otolaryngology nursing significantly improved the student’s academic performance and teaching effectiveness.This method has great practical value.展开更多
Nitrocellulose,or cellulose nitrate,has received considerable interest due to its various applications,such as propellants,coating agents and gas generators.However,its high mechanical sensitivity caused many accident...Nitrocellulose,or cellulose nitrate,has received considerable interest due to its various applications,such as propellants,coating agents and gas generators.However,its high mechanical sensitivity caused many accidents during its storage and usage in ammunition.In this work,two kinds of insensitive step ladderstructured nitrocellulose(LNC)with different nitrogen contents were synthesized.The products were characterized by FT-IR,Raman,XRD,SEM,elemental analysis,TGA,DSC,accelerating rate calorimeter analysis(ARC),and drop weight test to study their molecular structure,thermal characteristics and desensitization performance.Compared with raw nitrocellulose,LNC has a sharper exothermic peak in the DSC and ARC curves.The H50values of the two kinds of LNC increased from 25.76 to 30.01 cm for low nitrogen content and from 18.02 to 21.84 cm for high nitrogen content,respectively.The results show that the ladder-structure of LNC which provides regular molecular arrangement and a soft buffer made with polyethylene glycol could affect the energy releasing process of LNC and reduce the sensitivity of LNC.Insensitive LNC provides an alternative to be used as a binder in insensitive propellants formulation.展开更多
An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit ...An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit topology with two binary-weighted SC cells,enabling eight SC-cell-based improved SC ladders to achieve the same fine-tuning steps as twelve SC-cell-based conventional SC ladders.To achieve lower phase noise and smaller chip size,the promoted binary-weighted digi-tally controlled transmission lines(DCTLs)are used to implement the coarse and medium tuning banks of the DCO.Compared to the conventional thermometer-coded DCTLs,control bits of the proposed DCTLs are reduced from 30 to 8,and the total length is reduced by 34.3%(from 122.76 to 80.66μm).Fabricated in 40-nm CMOS,the DCO demonstrated in this work fea-tures a small fine-tuning step(483 kHz),a high oscillation frequency(79-85 GHz),and a smaller chip size(0.017 mm^(2)).Com-pared to previous work,the modified DCO exhibits an excellent figure of merit with an area(FoMA)of-198 dBc/Hz.展开更多
Since the end of the 1990s,cryptosystems implemented on smart cards have had to deal with two main categories of attacks:side-channel attacks and fault injection attacks.Countermeasures have been developed and validat...Since the end of the 1990s,cryptosystems implemented on smart cards have had to deal with two main categories of attacks:side-channel attacks and fault injection attacks.Countermeasures have been developed and validated against these two types of attacks,taking into account a well-defined attacker model.This work focuses on small vulnerabilities and countermeasures related to the Elliptic Curve Digital Signature Algorithm(ECDSA)algorithm.The work done in this paper focuses on protecting the ECDSA algorithm against fault-injection attacks.More precisely,we are interested in the countermeasures of scalar multiplication in the body of the elliptic curves to protect against attacks concerning only a few bits of secret may be sufficient to recover the private key.ECDSA can be implemented in different ways,in software or via dedicated hardware or a mix of both.Many different architectures are therefore possible to implement an ECDSA-based system.For this reason,this work focuses mainly on the hardware implementation of the digital signature ECDSA.In addition,the proposed ECDSA architecture with and without fault detection for the scalar multiplication have been implemented on Xilinxfield programmable gate arrays(FPGA)platform(Virtex-5).Our implementation results have been compared and discussed.Our area,frequency,area overhead and frequency degradation have been compared and it is shown that the proposed architecture of ECDSA with fault detection for the scalar multiplication allows a trade-off between the hardware overhead and the security of the ECDSA.展开更多
目的观察硫芥对大鼠脾脏淋巴细胞线粒体的损伤作用。方法用密度梯度离心法分离大鼠脾淋巴细胞,与硫芥共同进行体外培养。用琼脂糖DNA凝胶电泳观察细胞凋亡的发生;用W estern b lot观察Cyt-c释放。用MTT法检测线粒体功能状态,以罗丹明12...目的观察硫芥对大鼠脾脏淋巴细胞线粒体的损伤作用。方法用密度梯度离心法分离大鼠脾淋巴细胞,与硫芥共同进行体外培养。用琼脂糖DNA凝胶电泳观察细胞凋亡的发生;用W estern b lot观察Cyt-c释放。用MTT法检测线粒体功能状态,以罗丹明123标记的荧光探针检测线粒体跨膜电位。结果100μmol/L硫芥作用4 h线粒体功能就有降低,线粒体跨膜电位降低,二者间呈直线相关。硫芥中毒早期即可引起淋巴细胞线粒体细胞色素C释放和细胞凋亡(DNA ladder)。结论硫芥可引起大鼠脾淋巴细胞线粒体明显损伤,线粒体参与了硫芥的细胞毒性作用过程。展开更多
基金supported by the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LR22A040001 and LY21A040004)the National Natural Science Foundation of China (Grant Nos.12074342 and 11835011)。
文摘We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.
文摘Objective:To analyze the feasibility of adopting a combined ladder and case teaching method in otolaryngology nursing teaching.Method:Nursing students in the otolaryngology department were selected.According to the admission time of nursing students,30 nursing students formed a control group(conventional nursing teaching),and 30 nursing students who were admitted later formed an observation group(ladder and case teaching method).The learning performance and teaching effectiveness of nursing students under different teaching methods were analyzed.Result:The academic performance and teaching effectiveness of the observation group were higher than those of the control group(P<0.05).Conclusion:The implementation of the ladder and case teaching method during the teaching of otolaryngology nursing significantly improved the student’s academic performance and teaching effectiveness.This method has great practical value.
基金supported in part by the National Natural Science Foundation of China(No.22075146)。
文摘Nitrocellulose,or cellulose nitrate,has received considerable interest due to its various applications,such as propellants,coating agents and gas generators.However,its high mechanical sensitivity caused many accidents during its storage and usage in ammunition.In this work,two kinds of insensitive step ladderstructured nitrocellulose(LNC)with different nitrogen contents were synthesized.The products were characterized by FT-IR,Raman,XRD,SEM,elemental analysis,TGA,DSC,accelerating rate calorimeter analysis(ARC),and drop weight test to study their molecular structure,thermal characteristics and desensitization performance.Compared with raw nitrocellulose,LNC has a sharper exothermic peak in the DSC and ARC curves.The H50values of the two kinds of LNC increased from 25.76 to 30.01 cm for low nitrogen content and from 18.02 to 21.84 cm for high nitrogen content,respectively.The results show that the ladder-structure of LNC which provides regular molecular arrangement and a soft buffer made with polyethylene glycol could affect the energy releasing process of LNC and reduce the sensitivity of LNC.Insensitive LNC provides an alternative to be used as a binder in insensitive propellants formulation.
基金This work is supported by the National Natural Science Foundation of China(No.61674036)the National Key Research and Development Program of China(No.2018YFB2202200).
文摘An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit topology with two binary-weighted SC cells,enabling eight SC-cell-based improved SC ladders to achieve the same fine-tuning steps as twelve SC-cell-based conventional SC ladders.To achieve lower phase noise and smaller chip size,the promoted binary-weighted digi-tally controlled transmission lines(DCTLs)are used to implement the coarse and medium tuning banks of the DCO.Compared to the conventional thermometer-coded DCTLs,control bits of the proposed DCTLs are reduced from 30 to 8,and the total length is reduced by 34.3%(from 122.76 to 80.66μm).Fabricated in 40-nm CMOS,the DCO demonstrated in this work fea-tures a small fine-tuning step(483 kHz),a high oscillation frequency(79-85 GHz),and a smaller chip size(0.017 mm^(2)).Com-pared to previous work,the modified DCO exhibits an excellent figure of merit with an area(FoMA)of-198 dBc/Hz.
基金The funding was provided by the Deanship of Scientific Research at King Khalid University through Research Group Project[grant number RGP.1/157/42].
文摘Since the end of the 1990s,cryptosystems implemented on smart cards have had to deal with two main categories of attacks:side-channel attacks and fault injection attacks.Countermeasures have been developed and validated against these two types of attacks,taking into account a well-defined attacker model.This work focuses on small vulnerabilities and countermeasures related to the Elliptic Curve Digital Signature Algorithm(ECDSA)algorithm.The work done in this paper focuses on protecting the ECDSA algorithm against fault-injection attacks.More precisely,we are interested in the countermeasures of scalar multiplication in the body of the elliptic curves to protect against attacks concerning only a few bits of secret may be sufficient to recover the private key.ECDSA can be implemented in different ways,in software or via dedicated hardware or a mix of both.Many different architectures are therefore possible to implement an ECDSA-based system.For this reason,this work focuses mainly on the hardware implementation of the digital signature ECDSA.In addition,the proposed ECDSA architecture with and without fault detection for the scalar multiplication have been implemented on Xilinxfield programmable gate arrays(FPGA)platform(Virtex-5).Our implementation results have been compared and discussed.Our area,frequency,area overhead and frequency degradation have been compared and it is shown that the proposed architecture of ECDSA with fault detection for the scalar multiplication allows a trade-off between the hardware overhead and the security of the ECDSA.