This paper deals with the problem of delay size stability analysis of single input-delayed linear and nonlinear systems. Conventional reduction, reduction linked by sliding mode, and linear memoryless control approach...This paper deals with the problem of delay size stability analysis of single input-delayed linear and nonlinear systems. Conventional reduction, reduction linked by sliding mode, and linear memoryless control approaches are used for simple input-delayed systems to obtain the stability conditions. Several first order examples are investigated systematically to demonstrate the capabilities and limitations of the advanced stability analysis techniques including Lyapunov-Krasovskii functionals, Newton-Leibniz formula, and a newly addressed Lagrange mean value theorem. Numerical comparative results show the usefulness and effectiveness of the advanced delay size analysis techniques proposed in this paper.展开更多
文摘This paper deals with the problem of delay size stability analysis of single input-delayed linear and nonlinear systems. Conventional reduction, reduction linked by sliding mode, and linear memoryless control approaches are used for simple input-delayed systems to obtain the stability conditions. Several first order examples are investigated systematically to demonstrate the capabilities and limitations of the advanced stability analysis techniques including Lyapunov-Krasovskii functionals, Newton-Leibniz formula, and a newly addressed Lagrange mean value theorem. Numerical comparative results show the usefulness and effectiveness of the advanced delay size analysis techniques proposed in this paper.