Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recogniz...Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recognized,of which the stable type for production and gas concentration is the most dominate,as determined by a comprehensive study on the volume and concentration of drained gases, as well as the stress changes of rocks influenced by mining.Some influence factors for the productive differences of the drainage wells were also been discussed.The results indicate that protective coal-seam mining has a significant effect on overlying strata,which promotes the development of pores and fractures of coal reservoirs for methane desorption and migration;however,the production and the stability of drainage wells are affected by deformation and damage of the overlying strata.The second distribution of strata stress is caused by mining engineering,and if the stress load is larger than the carrying capacity of the extraction well,the gas production would be influenced by the drainage well that has been damaged by rock movement.Furthermore,the case damage occurs first in the weak, lithologic interface by its special mechanical properties.The stability of drainage wells and the production status are also influenced by the different drilling techniques,uneven distribution of gas concentration,and combination of gob gas and methane from the protected layer.展开更多
In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local sh...In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local shrub, Vitex negundo var. heterophylla Rebd. and a mixture of both communities. The ET was measured using level lysimeters (with a slope of 0°) and slope lysimeters (with a slope of 25°). In general, the measured ET was higher in the level lysimeters than in the slope lysimeters because of the water loss of surface runoff from the slope lysimeter. The total ETs over the growing season for the grass, shrub, and the mixture were 730.4, 742.0 and 790.7 mm, respectively in the level lysimeters, and 535.5, 504.1 and 540.1 mm, respectively in the slope lysimeters. In addition, the monthly ET peaked in August and had close linear relationship with leaf area index. The drainage lysimeter is an effective tool to estimate plant ET in mountain areas. The results from this research would provide scientific information for the vegetation recovery and sustainable development of forestry in the TM areas.展开更多
Acid Mine Drainage(AMD)from coal mining is a serious environmental issue which affects water quality,ecology,and the overall landscape of the basin.A large number of coal mine tailings in the mountainous regions of Gu...Acid Mine Drainage(AMD)from coal mining is a serious environmental issue which affects water quality,ecology,and the overall landscape of the basin.A large number of coal mine tailings in the mountainous regions of Guizhou Province,China were unattended and iron-rich AMD was directly discharged to the rivers.This discharge leaves the river―yellow‖and heavily polluted.This study tries to find an efficient and economical method for treating iron-rich AMD.We sampled AMD water in two sites:Yangliujie town of Duyun city(hereafter,called Yangliujie),and Xinglong Coal Mine,Duliu town of Guiding county(hereafter,called Xinglong).We performed iron removal laboratory experiment with Cement-Bentonite Agent(CBA,80%cement and 20%bentonite)in 500 mL AMD water from Yangliujie,scale-up experiment in 15 L AMD water from both Yangliujie and Xinglong,and engineering application in Xinglong respectively.Laboratory experiment results showed the iron removal rate can reach 99.8%and the removal rate depends on the CBA dosage and the treatment time.In the scale-up experiment,we found that Fe concentration could be reduced from 587.0 to 0.2 mg/L when adding 20 g/L CBA to the AMD water and aerating for 3 hours.As sampled water in Xinglong has a very high Fe concentration(Fe 1019.8 mg/L)and the concentration varies with seasons,it is not economical to add the CBA directly to the AMD water.Considering the abundant and cheap limestone resources in Guizhou,we used a twostep treatment method,first we added CaCO3 to raise the pH,and then we took the supernatant liquor and added CBA to the liquor.It was shown that 15 g/L of CBA was a good dosage for iron removal with Fe concentration being reduced from 1019.8 to 0.3 mg/L when CaCO3 was used to raise the pH.The best treatment realized over 99.9%iron removal,99.2%NH3-N removal,98.9%CODMn removal,and heavy metals in the treated water were reduced to under the limit stipulated in the―Environmental Quality Standards of Surface Water in China‖.Thus in the engineering application,we used this two-step treatment method.After the treatment,the pH of the iron-rich AMD(pH 2.86,Fe 2624.6 mg/L)increased to 8.53,the concentration of Fe was reduced to 59.5 mg/L,NH3-N decreased from 16.15 to less than 0.05 mg/L,CODMn decreased from 323.33 to 24.57 mg/L,heavy metals except Fe and Mn were reduced to under the limit of surface water.In conclusion,the use of CBA can effectively remove Fe and other heavy metals from the iron-rich AMD and adjust the pH value to the range of a natural water body.展开更多
With the characteristics of coal seam geology and gas occurrence,a'ground-underground' integrated gas drainage method was formed,which can relieve gaspressure and increase permeability by mining the protection...With the characteristics of coal seam geology and gas occurrence,a'ground-underground' integrated gas drainage method was formed,which can relieve gaspressure and increase permeability by mining the protection seams in conditional regions.After coal seam gas drainage,high gas outburst seam was converted to low gas safetyseam.In the coal face mining process,safety and high efficient coal mining were realizedby the measure of gas-suction over mining.In addition to the drainage gas for civil gasand gas power generation,the Huaibei Mining Group has actively carried out research onthe utilization technology of methane drainage by ventilation.On the one hand,it can saveprecious energy;on the other hand,it can protect the environment for people's survival.In2007,the amount of coal mine gas drainage was 120 hm3;the rate of coal mine gasdrainage was 44%.Compared with the year 2002,the amount of coal mine gas drainageincreased by two times.Meanwhile,the utilization rate of gas increased rapidly.展开更多
Since the 1990s, the Yellow River stream has been temporarily interrupted for several years, which affects the development of society, the economy and human life, limits the economic potential of the drainage areas, a...Since the 1990s, the Yellow River stream has been temporarily interrupted for several years, which affects the development of society, the economy and human life, limits the economic potential of the drainage areas, and especially causes great harm to regions on the lower reaches. Based on the analysis of the relationship between the development of society and economy and water scarcity, the author thinks it is necessary to optimize and adjust the industrial structure that has extravagantly consumed enormous amounts of water, and to develop ecological agriculture, industry and tourism which are balanced with the ecological environment. Finally, the author puts forward several pieces of advice and countermeasures about how to build the economic systems by which water can be used economically.展开更多
We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the bu...We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 l^n2, less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km2, less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 krn2, large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km^2, large-scale httman disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.展开更多
On the basis of water-balance equation in Dongting Lake and Xiang Zi Yuan-Li River drainage areas, a possib1e flood height relating to the rainfall precipitation in these areas has been inferred. According to the floo...On the basis of water-balance equation in Dongting Lake and Xiang Zi Yuan-Li River drainage areas, a possib1e flood height relating to the rainfall precipitation in these areas has been inferred. According to the flood simulation, some synthetic maintenance strategies to prevent future catastrophic f1oods in Dongting Lake drainage area have been also presented.展开更多
It is an important guarantee to enhance the production of coalbed methane (CBM) and reduce the project invest- ment by finding out the drainage feature about CBM wells in different hydrogeological conditions. Based ...It is an important guarantee to enhance the production of coalbed methane (CBM) and reduce the project invest- ment by finding out the drainage feature about CBM wells in different hydrogeological conditions. Based on the CBM explora- tion and development data on the Fanzhuang block in southeast Qinshui Basin and combined with the seepage principle and lithology on the roof and the bottom coalbed, the mathematical model of integrated permeability was established. By perme- ability experiments of the different lithologies on the roof and the floor within the 20 m range combined with the log curves, the integrated permeability of different lithological combinations were obtained. The starting pressure gradient and permeabi- lity of the roof and the floor for different lithologies was tested by "differential pressure-flow method". The relationships be- tween the starting pressure gradient and the integrated permeability were obtained. The critical distance of limestone water penetrating into coal reservoirs was calculated. According to the drainage feature of CBM wells combined with the drainage data of some CBM wells, the results show that, when limestone water can penetrate into coal reservoirs, the daily water production is high and the daily gas production is low although there is no gas at the beginning of the drainage process, the CBM wells stop discharging water within 6 months after the gas began to come out, and the gas production is steadily improved. When limestone water can not penetrate into coal reservoirs, the daily water production is low and the daily gas production is high at the beginning of the drainage process, and it almost stops discharging water after some time when the gas come out, the daily gas production increases, and the cumulative water production is much lower.展开更多
Qinghai Lake is located in the northeastern Qinghai Xizang(Tibet) Plateau. It is an especially big light saltwater lake. The mire meadow in Qinghai Lake drainage area is an eco system which is affected by the eco ...Qinghai Lake is located in the northeastern Qinghai Xizang(Tibet) Plateau. It is an especially big light saltwater lake. The mire meadow in Qinghai Lake drainage area is an eco system which is affected by the eco environment factors. Its formation, development and temporal and spatial distribution law are decided by a few main meteorological factors in the eco environment to a certain extent. The main meteorological factors are ≥10℃ accumulated temperature, precipitation from May to September and annual humidity coefficient. The mathematical model of the mire wetland rate and the main meteorological factors is given by multivariate linear regression in the paper.展开更多
Firstly,it is pointed out that circular economy should be vigorously developed in the Nansi Lake Drainage Area,and the connotation of circular economy is expounded.Then,problems in developing circular economy in Nansi...Firstly,it is pointed out that circular economy should be vigorously developed in the Nansi Lake Drainage Area,and the connotation of circular economy is expounded.Then,problems in developing circular economy in Nansi Lake Drainage Area are analyzed from the aspects of agriculture,industrial enterprises,and waste utilization.Finally,combining with the four modes of peasant household,enterprise,region and society in the development of circular economy,corresponding countermeasures are put forward for the circular economy in Nansi Lake Drainage Area,such as establishing the government guidance mechanism for big agriculture circular economy in Nansi Lake Drainage Area,constructing incentive systems for industrial enterprises adopting circular economy in Nansi Lake Drainage Area,adjusting the industrial structure of Nansi Lake Drainage Area,and optimizing the energy consumption structure.展开更多
In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on...In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on surface runoff model,as well as to compare the two extracted results.The result showed that through the introduction of drainage density parameter to determine the river drainage area threshold,the both extracted drainages showed the goodness-of-fit with the factual drainage network on 1∶250 000 scale topographic map,and the extracted digital river could be used in practical operation of the risk assessment model of mountain torrents disaster in Liaohe basin.展开更多
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig...Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.展开更多
Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This st...Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This study took the Wudong coal mine in Xinjiang province of China as a typical case. The gas occurrence of the coal seam and the pressure-relief range of the surrounding rock(coal) were studied by experiments and numerical simulations. Then, a new method to calculate the gas emission quantity for this special geological condition was provided. Based on the calculated quantity, a further gas drainage plan, as well as the evaluation of it with field drainage data, was finally given. The results are important for engineers to reasonably plan the gas drainage boreholes of steeply inclined and extremely thick coal seams.展开更多
Guided by the theory of groundwater system, based on the groundwater level data from the northern basin of Laiyuan Spring area, the authors took into account factors such as the lithology, geological structure and top...Guided by the theory of groundwater system, based on the groundwater level data from the northern basin of Laiyuan Spring area, the authors took into account factors such as the lithology, geological structure and topography to study the relationship between groundwater recharge, runoff and drainage in this area. It was concluded that the infiltration of atmospheric precipitation is the main source of groundwater supply in this area; the upper layer of the Spring area is distributed with the Cambrian-Lower Ordovician karst water, and the lower layer is filled with the Jixian system karst water. The upper layer of karst water supplies to the lower layer of karst water or the pore water in loose strata through the fault while the lower layer of karst water runs to the three strong runoff belts from the east and west sides of the watershed, southwards into the basin, partially replenishing the pore water in loose strata, or forming fault Springs(e.g. Nanguan Spring, Beihai Spring) when dolomite movement encounters faults. Replenished by atmospheric precipitation and the upper and lower layers of karst waters, the pore water in loose strata joins the groundwater in the southern basin and then flows eastwards, in the end it flows out of the system in Shangfanpu. Through the analyses of groundwater level data and hydrogeological drilling data, based on groundwater D and ^(18) O isotope test results, the karst groundwater circulation system in the northern basin of Laiyuan Spring area is further verified, which provides hydrogeological basis for water resources development and utilization as well as protection in this area.展开更多
Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data fo...Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data for the USDAForestServiceSanteeExperimentalForestin coastalSouth Carolina,USAwas used to delineate the remnant historical water management structures within the watersheds supporting bottomland hardwood forests that are typical of the re- gion. Hydrologic functions were altered during the early1700’s agricultural use period for rice cultivation, with changes to detention storage, impoundments, and runoff routing. Since late1800’s, the land was left to revert to forests, without direct intervention. The resultant bottomlands, while typical in terms of vegetative structure and composition, still have altered hydrologic pathways and functions due to the historical land use. Furthermore, an accurate estimate of the watershed drainage area (DA) contributing to stream flow is critical for reliable estimates of peak flow rate, runoff depth and coefficient, as well as water and chemical balance. Peak flow rate, a parameter widely used in design of channels and cross drainage structures, is calculated as a function of the DA and other parameters. However, in contrast with the upland watersheds, currently available topographic maps and digital elevation models (DEMs) used to estimate the DA are not adequate for flat, low-gradient Coastal Plain (LCP) landscape. In this paper we explore a case study of a 3rd order watershed (equivalent to 14-digit hydrologic unit code (HUC)) at headwaters of east branch of Cooper River draining to Charleston Harbor, SC to assess the drainage area and corresponding mean annual runoff coefficient based on various DEMs including LiDAR data. These analyses demonstrate a need for application of LiDAR-based DEMs together with field verification to improve the basis for assessments of hydrology, watershed drainage characteristics, and modeling in the LCP.展开更多
Recently severe damage of flooding by urbanization was frequently occurred. To prevent this damage, small reservoir was constructed in the urbanized residential area. This paper describes an effect of flood peak disch...Recently severe damage of flooding by urbanization was frequently occurred. To prevent this damage, small reservoir was constructed in the urbanized residential area. This paper describes an effect of flood peak discharge control by a small reservoir (control reservoir) caused by rapidly developed urbanization. Although work for this purpose was conducted, research on the effects of the control reservoir was not conducted until now. This research, conducted by simulation, was a case study in the Kurabe River Basin in the Tedori River Alluvial Fan Area, Japan, based on the precise investigation of the reservoir in the actual field. The study was conducted to determine not only the actual control reservoir capacity for the newly developed residential area but also the ideal capacity for all present residential areas and the largest capacity allowable for a maximum rainfall event that recently occurred. The control reservoir effects between individual blocks and the entire basin area were compared by dividing the test basin into 15 blocks (sub-basins). The results showed that the effects on the capacity per unit area of the residential area in blocks have close relationship with the decreasing ratio of peak discharge in blocks. Consequently, the effects of control reservoir capacity and the limitation were clarified. In the future, control reservoirs should be constructed for all of the already developed residential areas, for example, by utilizing underground car parking lot. The results of this research can contribute to the design of the control reservoir for protection against flooding damage in urbanized areas.展开更多
由于页岩气渗流机理复杂,赋存方式多样,压裂后对裂缝网络的精确识别和表征存在较大困难,现有方法难以准确预测页岩气井产量。为此,提出了机理—数据融合建模的思路,结合连续拟稳态假设、物质平衡方程、产量递减分析方法和递推原理,建立...由于页岩气渗流机理复杂,赋存方式多样,压裂后对裂缝网络的精确识别和表征存在较大困难,现有方法难以准确预测页岩气井产量。为此,提出了机理—数据融合建模的思路,结合连续拟稳态假设、物质平衡方程、产量递减分析方法和递推原理,建立了物理—数据协同驱动的产量预测方法,进而以中国某区块页岩气井现场生产数据为例,对该方法的准确性、可靠性进行了测试,并与经验产量递减分析和时间序列分析方法进行了对比分析。研究结果表明:(1)建立的产能模型采用拟压力代替压力,采用物质平衡拟时间代替时间,弱化了产量、流压和甲烷物性变化带来的影响;(2)以累计产量误差最小为目标开展历史拟合,弱化了生产制度变化带来的影响,使得建立的产能模型能够自动适应流压—产量变化;(3)应用该方法的关键在于采气指数—物质平衡拟时间双对数图中的特征直线,若图中出现特征直线,则可以开展产量预测,反之,则不能预测。结论认为:(1)建立的产量预测方法将不稳定流动问题转化为拟稳态流动问题求解,简化了对储层非均质性的描述,避开了裂缝网络精确识别和定量表征的难题,计算效率高,可解释性强;(2)生产数据测试结果表明该产量预测方法精度高,长期预测结果稳定,并优于Logistic Growth Model、Duong和StretchedExponential Production Decline经验产量递减分析方法,也优于非线性自回归神经网络、长短记忆神经网络时间序列分析方法。展开更多
基金supported by the National High Technology Research and Development Program of China (863)(grant no.2007AA06Z220)Important Project of the Ministry of Education(grant no.307014)the Huainan Mining Group program
文摘Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recognized,of which the stable type for production and gas concentration is the most dominate,as determined by a comprehensive study on the volume and concentration of drained gases, as well as the stress changes of rocks influenced by mining.Some influence factors for the productive differences of the drainage wells were also been discussed.The results indicate that protective coal-seam mining has a significant effect on overlying strata,which promotes the development of pores and fractures of coal reservoirs for methane desorption and migration;however,the production and the stability of drainage wells are affected by deformation and damage of the overlying strata.The second distribution of strata stress is caused by mining engineering,and if the stress load is larger than the carrying capacity of the extraction well,the gas production would be influenced by the drainage well that has been damaged by rock movement.Furthermore,the case damage occurs first in the weak, lithologic interface by its special mechanical properties.The stability of drainage wells and the production status are also influenced by the different drilling techniques,uneven distribution of gas concentration,and combination of gob gas and methane from the protected layer.
基金supported by the national Knowledge Innovation Project (KIP) at the Chinese Academy of Sciences (CAS) (No. KZCX2-YW-Q06-2)Project of Northeast Institute of Geography and Agroecology, CAS (No. KZCX3-SW-NA3-29)
文摘In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local shrub, Vitex negundo var. heterophylla Rebd. and a mixture of both communities. The ET was measured using level lysimeters (with a slope of 0°) and slope lysimeters (with a slope of 25°). In general, the measured ET was higher in the level lysimeters than in the slope lysimeters because of the water loss of surface runoff from the slope lysimeter. The total ETs over the growing season for the grass, shrub, and the mixture were 730.4, 742.0 and 790.7 mm, respectively in the level lysimeters, and 535.5, 504.1 and 540.1 mm, respectively in the slope lysimeters. In addition, the monthly ET peaked in August and had close linear relationship with leaf area index. The drainage lysimeter is an effective tool to estimate plant ET in mountain areas. The results from this research would provide scientific information for the vegetation recovery and sustainable development of forestry in the TM areas.
基金supported by"Guizhou Coal Mine Water Control Technology Research and Development"projectthe Department of Science and Technology of Sichuan Province(20GJHZ0296)。
文摘Acid Mine Drainage(AMD)from coal mining is a serious environmental issue which affects water quality,ecology,and the overall landscape of the basin.A large number of coal mine tailings in the mountainous regions of Guizhou Province,China were unattended and iron-rich AMD was directly discharged to the rivers.This discharge leaves the river―yellow‖and heavily polluted.This study tries to find an efficient and economical method for treating iron-rich AMD.We sampled AMD water in two sites:Yangliujie town of Duyun city(hereafter,called Yangliujie),and Xinglong Coal Mine,Duliu town of Guiding county(hereafter,called Xinglong).We performed iron removal laboratory experiment with Cement-Bentonite Agent(CBA,80%cement and 20%bentonite)in 500 mL AMD water from Yangliujie,scale-up experiment in 15 L AMD water from both Yangliujie and Xinglong,and engineering application in Xinglong respectively.Laboratory experiment results showed the iron removal rate can reach 99.8%and the removal rate depends on the CBA dosage and the treatment time.In the scale-up experiment,we found that Fe concentration could be reduced from 587.0 to 0.2 mg/L when adding 20 g/L CBA to the AMD water and aerating for 3 hours.As sampled water in Xinglong has a very high Fe concentration(Fe 1019.8 mg/L)and the concentration varies with seasons,it is not economical to add the CBA directly to the AMD water.Considering the abundant and cheap limestone resources in Guizhou,we used a twostep treatment method,first we added CaCO3 to raise the pH,and then we took the supernatant liquor and added CBA to the liquor.It was shown that 15 g/L of CBA was a good dosage for iron removal with Fe concentration being reduced from 1019.8 to 0.3 mg/L when CaCO3 was used to raise the pH.The best treatment realized over 99.9%iron removal,99.2%NH3-N removal,98.9%CODMn removal,and heavy metals in the treated water were reduced to under the limit stipulated in the―Environmental Quality Standards of Surface Water in China‖.Thus in the engineering application,we used this two-step treatment method.After the treatment,the pH of the iron-rich AMD(pH 2.86,Fe 2624.6 mg/L)increased to 8.53,the concentration of Fe was reduced to 59.5 mg/L,NH3-N decreased from 16.15 to less than 0.05 mg/L,CODMn decreased from 323.33 to 24.57 mg/L,heavy metals except Fe and Mn were reduced to under the limit of surface water.In conclusion,the use of CBA can effectively remove Fe and other heavy metals from the iron-rich AMD and adjust the pH value to the range of a natural water body.
文摘With the characteristics of coal seam geology and gas occurrence,a'ground-underground' integrated gas drainage method was formed,which can relieve gaspressure and increase permeability by mining the protection seams in conditional regions.After coal seam gas drainage,high gas outburst seam was converted to low gas safetyseam.In the coal face mining process,safety and high efficient coal mining were realizedby the measure of gas-suction over mining.In addition to the drainage gas for civil gasand gas power generation,the Huaibei Mining Group has actively carried out research onthe utilization technology of methane drainage by ventilation.On the one hand,it can saveprecious energy;on the other hand,it can protect the environment for people's survival.In2007,the amount of coal mine gas drainage was 120 hm3;the rate of coal mine gasdrainage was 44%.Compared with the year 2002,the amount of coal mine gas drainageincreased by two times.Meanwhile,the utilization rate of gas increased rapidly.
文摘Since the 1990s, the Yellow River stream has been temporarily interrupted for several years, which affects the development of society, the economy and human life, limits the economic potential of the drainage areas, and especially causes great harm to regions on the lower reaches. Based on the analysis of the relationship between the development of society and economy and water scarcity, the author thinks it is necessary to optimize and adjust the industrial structure that has extravagantly consumed enormous amounts of water, and to develop ecological agriculture, industry and tourism which are balanced with the ecological environment. Finally, the author puts forward several pieces of advice and countermeasures about how to build the economic systems by which water can be used economically.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX2-YW-Q07-02)the National Basic Research Program of China (973Program)(No.2010CB428706)+1 种基金the Fund for Creative Research Groups of NSFC(No.41121064)the National Natural Science Foundation of China (No.41106090)
文摘We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 l^n2, less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km2, less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 krn2, large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km^2, large-scale httman disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.
文摘On the basis of water-balance equation in Dongting Lake and Xiang Zi Yuan-Li River drainage areas, a possib1e flood height relating to the rainfall precipitation in these areas has been inferred. According to the flood simulation, some synthetic maintenance strategies to prevent future catastrophic f1oods in Dongting Lake drainage area have been also presented.
基金Supported by the Major Projects of National Science and Technology Project "Development of Coal-bed Gas Dynamic Evaluation Model and Software System" (2011ZX05034-005) the National Natural Science Foundation of China (40902044)
文摘It is an important guarantee to enhance the production of coalbed methane (CBM) and reduce the project invest- ment by finding out the drainage feature about CBM wells in different hydrogeological conditions. Based on the CBM explora- tion and development data on the Fanzhuang block in southeast Qinshui Basin and combined with the seepage principle and lithology on the roof and the bottom coalbed, the mathematical model of integrated permeability was established. By perme- ability experiments of the different lithologies on the roof and the floor within the 20 m range combined with the log curves, the integrated permeability of different lithological combinations were obtained. The starting pressure gradient and permeabi- lity of the roof and the floor for different lithologies was tested by "differential pressure-flow method". The relationships be- tween the starting pressure gradient and the integrated permeability were obtained. The critical distance of limestone water penetrating into coal reservoirs was calculated. According to the drainage feature of CBM wells combined with the drainage data of some CBM wells, the results show that, when limestone water can penetrate into coal reservoirs, the daily water production is high and the daily gas production is low although there is no gas at the beginning of the drainage process, the CBM wells stop discharging water within 6 months after the gas began to come out, and the gas production is steadily improved. When limestone water can not penetrate into coal reservoirs, the daily water production is low and the daily gas production is high at the beginning of the drainage process, and it almost stops discharging water after some time when the gas come out, the daily gas production increases, and the cumulative water production is much lower.
文摘Qinghai Lake is located in the northeastern Qinghai Xizang(Tibet) Plateau. It is an especially big light saltwater lake. The mire meadow in Qinghai Lake drainage area is an eco system which is affected by the eco environment factors. Its formation, development and temporal and spatial distribution law are decided by a few main meteorological factors in the eco environment to a certain extent. The main meteorological factors are ≥10℃ accumulated temperature, precipitation from May to September and annual humidity coefficient. The mathematical model of the mire wetland rate and the main meteorological factors is given by multivariate linear regression in the paper.
基金Supported by the National Water Pollution Control and Management Technology Major Projects(2009ZX07210-007)
文摘Firstly,it is pointed out that circular economy should be vigorously developed in the Nansi Lake Drainage Area,and the connotation of circular economy is expounded.Then,problems in developing circular economy in Nansi Lake Drainage Area are analyzed from the aspects of agriculture,industrial enterprises,and waste utilization.Finally,combining with the four modes of peasant household,enterprise,region and society in the development of circular economy,corresponding countermeasures are put forward for the circular economy in Nansi Lake Drainage Area,such as establishing the government guidance mechanism for big agriculture circular economy in Nansi Lake Drainage Area,constructing incentive systems for industrial enterprises adopting circular economy in Nansi Lake Drainage Area,adjusting the industrial structure of Nansi Lake Drainage Area,and optimizing the energy consumption structure.
基金Supported by National Science and Technology Support Project(2008BAK49B07)~~
文摘In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on surface runoff model,as well as to compare the two extracted results.The result showed that through the introduction of drainage density parameter to determine the river drainage area threshold,the both extracted drainages showed the goodness-of-fit with the factual drainage network on 1∶250 000 scale topographic map,and the extracted digital river could be used in practical operation of the risk assessment model of mountain torrents disaster in Liaohe basin.
基金financially supported by the National Natural Science Foundation of China (51741908)
文摘Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.
基金provided by the National Science and Technology Major Project (No. 2016ZX05043-005)
文摘Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This study took the Wudong coal mine in Xinjiang province of China as a typical case. The gas occurrence of the coal seam and the pressure-relief range of the surrounding rock(coal) were studied by experiments and numerical simulations. Then, a new method to calculate the gas emission quantity for this special geological condition was provided. Based on the calculated quantity, a further gas drainage plan, as well as the evaluation of it with field drainage data, was finally given. The results are important for engineers to reasonably plan the gas drainage boreholes of steeply inclined and extremely thick coal seams.
基金supported by the geological survey project of China Geological Survey(CGS)“1:50000 Hydrogeological Surveys in Taihang Mountainous Area(9)”(No.12120114010801)
文摘Guided by the theory of groundwater system, based on the groundwater level data from the northern basin of Laiyuan Spring area, the authors took into account factors such as the lithology, geological structure and topography to study the relationship between groundwater recharge, runoff and drainage in this area. It was concluded that the infiltration of atmospheric precipitation is the main source of groundwater supply in this area; the upper layer of the Spring area is distributed with the Cambrian-Lower Ordovician karst water, and the lower layer is filled with the Jixian system karst water. The upper layer of karst water supplies to the lower layer of karst water or the pore water in loose strata through the fault while the lower layer of karst water runs to the three strong runoff belts from the east and west sides of the watershed, southwards into the basin, partially replenishing the pore water in loose strata, or forming fault Springs(e.g. Nanguan Spring, Beihai Spring) when dolomite movement encounters faults. Replenished by atmospheric precipitation and the upper and lower layers of karst waters, the pore water in loose strata joins the groundwater in the southern basin and then flows eastwards, in the end it flows out of the system in Shangfanpu. Through the analyses of groundwater level data and hydrogeological drilling data, based on groundwater D and ^(18) O isotope test results, the karst groundwater circulation system in the northern basin of Laiyuan Spring area is further verified, which provides hydrogeological basis for water resources development and utilization as well as protection in this area.
文摘Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data for the USDAForestServiceSanteeExperimentalForestin coastalSouth Carolina,USAwas used to delineate the remnant historical water management structures within the watersheds supporting bottomland hardwood forests that are typical of the re- gion. Hydrologic functions were altered during the early1700’s agricultural use period for rice cultivation, with changes to detention storage, impoundments, and runoff routing. Since late1800’s, the land was left to revert to forests, without direct intervention. The resultant bottomlands, while typical in terms of vegetative structure and composition, still have altered hydrologic pathways and functions due to the historical land use. Furthermore, an accurate estimate of the watershed drainage area (DA) contributing to stream flow is critical for reliable estimates of peak flow rate, runoff depth and coefficient, as well as water and chemical balance. Peak flow rate, a parameter widely used in design of channels and cross drainage structures, is calculated as a function of the DA and other parameters. However, in contrast with the upland watersheds, currently available topographic maps and digital elevation models (DEMs) used to estimate the DA are not adequate for flat, low-gradient Coastal Plain (LCP) landscape. In this paper we explore a case study of a 3rd order watershed (equivalent to 14-digit hydrologic unit code (HUC)) at headwaters of east branch of Cooper River draining to Charleston Harbor, SC to assess the drainage area and corresponding mean annual runoff coefficient based on various DEMs including LiDAR data. These analyses demonstrate a need for application of LiDAR-based DEMs together with field verification to improve the basis for assessments of hydrology, watershed drainage characteristics, and modeling in the LCP.
文摘Recently severe damage of flooding by urbanization was frequently occurred. To prevent this damage, small reservoir was constructed in the urbanized residential area. This paper describes an effect of flood peak discharge control by a small reservoir (control reservoir) caused by rapidly developed urbanization. Although work for this purpose was conducted, research on the effects of the control reservoir was not conducted until now. This research, conducted by simulation, was a case study in the Kurabe River Basin in the Tedori River Alluvial Fan Area, Japan, based on the precise investigation of the reservoir in the actual field. The study was conducted to determine not only the actual control reservoir capacity for the newly developed residential area but also the ideal capacity for all present residential areas and the largest capacity allowable for a maximum rainfall event that recently occurred. The control reservoir effects between individual blocks and the entire basin area were compared by dividing the test basin into 15 blocks (sub-basins). The results showed that the effects on the capacity per unit area of the residential area in blocks have close relationship with the decreasing ratio of peak discharge in blocks. Consequently, the effects of control reservoir capacity and the limitation were clarified. In the future, control reservoirs should be constructed for all of the already developed residential areas, for example, by utilizing underground car parking lot. The results of this research can contribute to the design of the control reservoir for protection against flooding damage in urbanized areas.
文摘由于页岩气渗流机理复杂,赋存方式多样,压裂后对裂缝网络的精确识别和表征存在较大困难,现有方法难以准确预测页岩气井产量。为此,提出了机理—数据融合建模的思路,结合连续拟稳态假设、物质平衡方程、产量递减分析方法和递推原理,建立了物理—数据协同驱动的产量预测方法,进而以中国某区块页岩气井现场生产数据为例,对该方法的准确性、可靠性进行了测试,并与经验产量递减分析和时间序列分析方法进行了对比分析。研究结果表明:(1)建立的产能模型采用拟压力代替压力,采用物质平衡拟时间代替时间,弱化了产量、流压和甲烷物性变化带来的影响;(2)以累计产量误差最小为目标开展历史拟合,弱化了生产制度变化带来的影响,使得建立的产能模型能够自动适应流压—产量变化;(3)应用该方法的关键在于采气指数—物质平衡拟时间双对数图中的特征直线,若图中出现特征直线,则可以开展产量预测,反之,则不能预测。结论认为:(1)建立的产量预测方法将不稳定流动问题转化为拟稳态流动问题求解,简化了对储层非均质性的描述,避开了裂缝网络精确识别和定量表征的难题,计算效率高,可解释性强;(2)生产数据测试结果表明该产量预测方法精度高,长期预测结果稳定,并优于Logistic Growth Model、Duong和StretchedExponential Production Decline经验产量递减分析方法,也优于非线性自回归神经网络、长短记忆神经网络时间序列分析方法。