期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
扫描速度对共析钢等离子表面淬火硬化的影响
1
作者 陈洪生 冯可芹 +3 位作者 魏仕烽 程梦晓 胡秋华 朱华 《材料热处理学报》 EI CAS CSCD 北大核心 2012年第10期139-143,共5页
以层流等离子弧作为热源对共析钢进行表面淬火,通过等离子表面淬火热传导的理论分析,对等离子弧扫描速度对硬化层最大硬化深度的影响进行研究。并利用电子扫描显微镜、显微硬度计等试验手段,研究了淬火硬化层的显微组织和力学性能。结... 以层流等离子弧作为热源对共析钢进行表面淬火,通过等离子表面淬火热传导的理论分析,对等离子弧扫描速度对硬化层最大硬化深度的影响进行研究。并利用电子扫描显微镜、显微硬度计等试验手段,研究了淬火硬化层的显微组织和力学性能。结果表明:层流等离子弧扫描速度越快,淬火硬化层最大硬化深度越小。得出等离子弧扫描速度与淬火硬化层最大硬化深度之间的关系,并且与实验结果相吻合。淬火硬化层组织为板条状马氏体和针状马氏体,淬火硬化层与基体的界面组织为珠光体和隐针马氏体,基体组织为珠光体。淬火硬化层硬度由共析钢基体的350 HV提高到900~1000 HV。 展开更多
关键词 层流等离子 表面淬火 组织结构 显微硬度 扫描速度
下载PDF
钢轨钢的层流等离子体束表面淬火过程仿真模型
2
作者 余德平 张斌 +2 位作者 宋文杰 郭达 彭科铭 《工程科学与技术》 EI CSCD 北大核心 2021年第6期185-193,共9页
采用层流等离子体束对钢轨钢进行表面淬火可提高其服役寿命,但目前处理参数的选取只能依靠实验方法,费时费力,若能建立表面淬火过程仿真模型,快速预测表面淬火过程温度场变化及淬火后硬化区的硬度分布,可实现最优处理参数的快速选取。... 采用层流等离子体束对钢轨钢进行表面淬火可提高其服役寿命,但目前处理参数的选取只能依靠实验方法,费时费力,若能建立表面淬火过程仿真模型,快速预测表面淬火过程温度场变化及淬火后硬化区的硬度分布,可实现最优处理参数的快速选取。作者基于有限元方法建立了层流等离子体束表面淬火过程的温度场仿真模型,通过表面淬火实验所得硬度分布确定碳扩散极限值;借助JMATPRO确定各升温速率下奥氏体转变速率,建立了金相组织预测模型。温度场仿真模型能够计算表面淬火过程中温度场分布变化,通过选取大于相变温度(如U75V钢轨钢为745℃)的节点可预测硬化区的宽度与深度,仿真得到的宽度、深度与实验所得宽度、深度误差在8%以内;通过提取硬化区中节点的温度变化曲线,代入金相组织预测模型可计算硬化区各节点位置处的奥氏体和马氏体转变情况,并预测硬化区截面硬度值;通过改变层流等离子体束表面淬火处理参数(包括电弧电流、阳极口径、扫描速度等)进行表面淬火实验,发现仿真模型得到的硬度值与实际硬度值有很好的吻合性,验证了所提钢轨钢层流等离子体束表面淬火过程仿真模型的正确性。 展开更多
关键词 U75V钢 层流等离子体束 数值模拟 表面淬火 奥氏体化
下载PDF
层流等离子体淬火对GCr15轴承钢的滚动接触疲劳及损伤性能的影响 被引量:3
3
作者 闵军雄 张敏男 +1 位作者 戴光泽 赵君文 《材料导报》 EI CAS CSCD 北大核心 2023年第2期169-175,共7页
为了提高GCr15轴承钢的滚动接触疲劳(RCF)性能,使用层流等离子体淬火(LPQ)技术对GCr15轴承钢表面进行了四种不同扫描速度(350 mm/min、550 mm/min、750 mm/min、950 mm/min)的等离子体淬火实验。用MJP-30滚动接触疲劳实验机对处理前后... 为了提高GCr15轴承钢的滚动接触疲劳(RCF)性能,使用层流等离子体淬火(LPQ)技术对GCr15轴承钢表面进行了四种不同扫描速度(350 mm/min、550 mm/min、750 mm/min、950 mm/min)的等离子体淬火实验。用MJP-30滚动接触疲劳实验机对处理前后的试样进行RCF试验。采用激光共聚焦显微镜(VK-9710)、超景深显微镜(UDM,VHX-1000C,Japan)、扫描电子显微镜分析试样组织结构、成分、微观损伤形貌,对试样进行硬度测试,分析疲劳扩展机理。结果表明:由于LPQ的冷却速率及加热速率较快,试样表面产生淬火硬化区,形成细小的隐晶马氏体组织,表层硬度增大。硬化层厚度影响RCF扩展机理,硬化层厚度越深,疲劳寿命越长,LPQ使RCF寿命延长64%。 展开更多
关键词 层流等离子体淬火(lpq) GCR15轴承钢 滚动接触疲劳(RCF) 裂纹扩展
下载PDF
层流等离子体点状淬火面积比对轮轨材料磨损性能的影响
4
作者 冯宗立 张青松 +1 位作者 戴光泽 李秋泽 《表面技术》 EI CAS CSCD 北大核心 2021年第9期244-253,260,共11页
目的运用层流等离子体点状淬火工艺,提高轮轨材料的耐磨性,并探究最佳的表面处理面积比率。方法采用层流等离子体点状淬火方式,对高速轮轨材料进行表面处理,利用MJP-30型滚动接触磨损试验机,对4组不同点状淬火面积比(0%、15%、30%、45%... 目的运用层流等离子体点状淬火工艺,提高轮轨材料的耐磨性,并探究最佳的表面处理面积比率。方法采用层流等离子体点状淬火方式,对高速轮轨材料进行表面处理,利用MJP-30型滚动接触磨损试验机,对4组不同点状淬火面积比(0%、15%、30%、45%)的轮轨试样进行滚动接触磨损试验,利用金相显微镜、扫描电子显微镜(SEM)、硬度计等对轮轨试样进行磨损形貌表征和耐磨性分析。结果层流等离子体点状淬火可获得板条状马氏体组织,轮轨材料表面硬度提升200%以上,磨损率降低80%以上。当面积比为30%时,轮轨材料的磨损率最小,相比于未处理试样,总磨损率下降约89.2%,车轮的磨损率降低约89.6%,钢轨降低约88.7%。对磨损试验后的轮轨试样进行表面损伤分析和截面显微组织观察,结果表明,点状淬火试样表面损伤显著减轻,剥离和裂纹主要集中在淬火过渡区域,淬火区域可以显著抑制材料的塑性变形,淬火区和基体结合层可抵抗裂纹的进一步扩展。当面积比为30%时,轮轨试样的耐磨性能最佳。结论层流等离子体点状淬火可有效提高轮轨材料的耐磨性,最佳的淬火面积比为30%左右。 展开更多
关键词 层流等离子体 点状淬火 滚动磨损 轮轨材料 表面损伤 塑性变形
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部