Laminar-turbulent transition is an old yet unsolved problem. Notwithstanding the great effort made, there is an important question that seems not to have been addressed yet, that is, what is the inherent mechanism of ...Laminar-turbulent transition is an old yet unsolved problem. Notwithstanding the great effort made, there is an important question that seems not to have been addressed yet, that is, what is the inherent mechanism of breakdown that eventually leads to transition? The conventional idea is that the transition starts from the amplification of disturbances, and when the disturbances become larger, higher harmonics will be generated due to nonlinear effect, making the flow more and more complicated, and finally turbulent. Though the scenario seems clear, yet there is a missing link, that is, what happens in the breakdown process. Here we show by analyzing the results from direct numerical simulations that the change of stability characteristics of the mean flow profile plays a key role in the breakdown process.展开更多
The determination of the critical transition Reynolds number is of practical importance for some engineering problems. However, it is not available with the current theoretical method, and has to rely on experiments. ...The determination of the critical transition Reynolds number is of practical importance for some engineering problems. However, it is not available with the current theoretical method, and has to rely on experiments. For supersonic/hypersonic boundary layer flows, the experimental method for determination is not feasible either. Therefore, in this paper, a numerical method for the determination of the critical transition Reynolds number for an incompressible plane channel flow is proposed. It is basically aimed to test the feasibility of the method. The proposed method is extended to determine the critical Reynolds number of the supersonic/hypersonic boundary layer flow in the subsequent papers.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.10232020)Liu-Hui Center of Applied Mathematics,Nankai and Tianjin University.
文摘Laminar-turbulent transition is an old yet unsolved problem. Notwithstanding the great effort made, there is an important question that seems not to have been addressed yet, that is, what is the inherent mechanism of breakdown that eventually leads to transition? The conventional idea is that the transition starts from the amplification of disturbances, and when the disturbances become larger, higher harmonics will be generated due to nonlinear effect, making the flow more and more complicated, and finally turbulent. Though the scenario seems clear, yet there is a missing link, that is, what happens in the breakdown process. Here we show by analyzing the results from direct numerical simulations that the change of stability characteristics of the mean flow profile plays a key role in the breakdown process.
基金Project supported by the National Key Research and Development Program of China(No.2016YFA0401200)the National Natural Science Foundation of China(Nos.11672204,11332007,11202147,and 11402167)
文摘The determination of the critical transition Reynolds number is of practical importance for some engineering problems. However, it is not available with the current theoretical method, and has to rely on experiments. For supersonic/hypersonic boundary layer flows, the experimental method for determination is not feasible either. Therefore, in this paper, a numerical method for the determination of the critical transition Reynolds number for an incompressible plane channel flow is proposed. It is basically aimed to test the feasibility of the method. The proposed method is extended to determine the critical Reynolds number of the supersonic/hypersonic boundary layer flow in the subsequent papers.