A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling l...A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan.展开更多
The composite leaf spring landing gear of an electric aircraft is optimized.With the strength and workability as constraints and the minimum structural weight as an objective,the two-stage optimization of the leaf spr...The composite leaf spring landing gear of an electric aircraft is optimized.With the strength and workability as constraints and the minimum structural weight as an objective,the two-stage optimization of the leaf spring landing gear with glass fiber unidirectional prepreg is carried out using a genetic algorithm,namely,the optimization of continuous thickness of layup,and the optimization of the layup sequence and discrete thickness.In the optimization process,the ground loads are calculated according to the structural stiffness of each chromosome,thus the stiffness constraints are relaxed,and the optimization results are compared with those using stiffness constraints.The static experiment verification reveals that the numerical simulation and experimental results are consistent,that is,the optimized leaf spring meets the strength requirements.The results show that the leaf spring landing gear based on two-stage optimization method achieves the objective of weight reduction.展开更多
基金Innovation Team Development Program of Ministry of Education of China (No. IRT0763)National Natural Science Foundation of China (No. 50205028).
文摘A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan.
基金the Natural Science Foundation of Liaoning (No. 20180550824)。
文摘The composite leaf spring landing gear of an electric aircraft is optimized.With the strength and workability as constraints and the minimum structural weight as an objective,the two-stage optimization of the leaf spring landing gear with glass fiber unidirectional prepreg is carried out using a genetic algorithm,namely,the optimization of continuous thickness of layup,and the optimization of the layup sequence and discrete thickness.In the optimization process,the ground loads are calculated according to the structural stiffness of each chromosome,thus the stiffness constraints are relaxed,and the optimization results are compared with those using stiffness constraints.The static experiment verification reveals that the numerical simulation and experimental results are consistent,that is,the optimized leaf spring meets the strength requirements.The results show that the leaf spring landing gear based on two-stage optimization method achieves the objective of weight reduction.