期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Perovskite/silicon-based heterojunction tandem solar cells with 14.8%conversion efficiency via adopting ultrathin Au contact
1
作者 Lin Fan Fengyou Wang +6 位作者 Junhui Liang Xin Yao Jia Fang Dekun Zhang Changchun Wei Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 EI CAS CSCD 2017年第1期60-65,共6页
A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open... A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell.Here,we present a four-terminal tandem solar cell architecture consisting of a selffiltered planar architecture perovskite top cell and a silicon heterojunction bottom cell.A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device.The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact.The four-terminal tandem solar cell yields an efficiency of 14.8%,with contributions of the top(8.98%)and the bottom cell(5.82%),respectively.We also point out that in terms of optical losses,the intermediate contact of self-filtered tandem architecture is the uppermost problem,which has been addressed in this communication,and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device. 展开更多
关键词 lanar perovskite top cell silicon heterojunction bottom cell four-terminal tandem transparent ultra-thin gold electrode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部