This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of c...This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.展开更多
Degradation of land/water ecotones in China is a serious problem and it is often neglected by people. The types of ecotone degradation are described and analyzed. The degradation of land/water ecotones enhanced the wa...Degradation of land/water ecotones in China is a serious problem and it is often neglected by people. The types of ecotone degradation are described and analyzed. The degradation of land/water ecotones enhanced the water quality reduction, bank erosion, desasters such as landslide, flood and drought, biodiversity reduction, lost of fertilized lands, decrease of the resource value of water scenic beauty and many others. The paper analyzes how these problems are related with each other.展开更多
According to interpreting the LANDSAT TM/ETM images of 1986 and 2002, the spatial-temporal characteristics of land use changes were analyzed during 16 years base on GIS. In addition, the change of ecosystem services d...According to interpreting the LANDSAT TM/ETM images of 1986 and 2002, the spatial-temporal characteristics of land use changes were analyzed during 16 years base on GIS. In addition, the change of ecosystem services due to land use change was estimated by the method of vaulting global ecosystem services. The result shows that there were rapid increases in the area of cropland, saline-alkaline land, and dramatic decreases in grassland, water area and wetland between 1986 and 2002. The annual value of the ecosystem services was declined from 767.1 ×10s Yuan/a in 1986 to 624.1 × 10s Yuan/a in 2002, the estimated annual ecosystem service value declined by 18. 6 % (i. e. 1.6% per year) between 1986 and 2002. It indicates that there had been a sever harm to ecosystem functions and services, which results from the deterioration of ecological environment and the adjustment of land use that aim to currently economic benefit.展开更多
This work assessed the impact of land use and land cover (LULC) change on the socio-economic conditions of the inhabitants in the Mount Bambouto Caldera from 1980-2016. To achieve this, three time series satellite ima...This work assessed the impact of land use and land cover (LULC) change on the socio-economic conditions of the inhabitants in the Mount Bambouto Caldera from 1980-2016. To achieve this, three time series satellite images;Landsat Thematic Mapper (TM) (1980), Landsat Enhanced Thematic Mapper (ETM) (2001), and Landsat 8 Operational Land Imager (OLI) (2016) scenes were employed to investigate the changes in LULC. The use of satellite images was supplemented with individual interviews, discussions with focus groups and key informants, and direct field observations. Five categories of LULC classes were identified namely: thick woody vegetation (natural forest and oil palms), light vegetation (croplands), savannah (grasslands), buildings (settlements), and bare grounds. The results showed that between 1980 and 2016, croplands, buildings and bare lands increased by 4%, 0.43% and 5.7% respectively while savannah/grassland and natural forest decreased by 4.4% and 5.8% respectively. Household survey revealed soil fertility decline and lack of credit schemes to be major constraints to crop production. Many religious holidays contribute to seasonal food shortages and the community faces a host of socio-economic and institutional challenges. Consequently, majority of house-holds are destitute, live in abject poverty;which is an indication of the need for interventions by government and other development stakeholders to tackle the problems of soil fertility, land use change and food insecurity.展开更多
In this paper,the theory and approach of environmental impact assessment in general land use planning are studied from different aspects.First,starting from the content and concept of general land use planning,the nec...In this paper,the theory and approach of environmental impact assessment in general land use planning are studied from different aspects.First,starting from the content and concept of general land use planning,the necessity of environmental impact assessment in general land use planning is illustrated.On the basis of its evaluation theories and methodologies,it attempts to establish index system of environmental impact assessment in general land use planning,and point outs that current general land use planning requires public participation.展开更多
Anthropogenic activities are increasingly catalyzing natural climatic factors that drive land cover change at different spatial scales. Available land cover data of the Mara River basin however give a broader picture ...Anthropogenic activities are increasingly catalyzing natural climatic factors that drive land cover change at different spatial scales. Available land cover data of the Mara River basin however give a broader picture of the entire basin regardless of the heterogeneity that exists at the sub-catchment level. This study sought to establish sub-catchment specific information on land cover changes through examination of satellite images of four Mara River sub-catchments (Amala, Nyangores, Talek and Sand River) for the period 1987-2017. The relationship between temperature, rainfall and land cover was also computed. In addition, a household survey and focus group discussions were conducted in each sub-catchments to establish the socio-economic impacts of land cover change on the community’s wellbeing. Forest cover was dominant in Amala (39.8%) and Nyangores (43.7%) sub-catchments in 1987 but by 2017 crop lands had surpassed forest cover in the two sub-catchments, accounting for 53.2% and 45.7%, respectively. However, in Talek (52.8%) and Sand River (47.4%) sub-catchments, grassland was the dominant land cover type in 1987 and after the 30 year period, grasslands remained dominant in Sand River, while shrub land became dominant in Talek sub-catchment. A weak positive correlation was observed between rainfall and forest cover, shrub land and cropland, while a negative correlation was observed between rainfall and bare land. Average temperature showed a positive moderate correlation with bare land and built up areas. Analysis of survey data revealed that livestock keeping, temperature increase, type of trees, education level of household head and weak environmental laws were the main drivers of land cover change (P −0.587), beans (r = −0.5459), sorghum (r = −0.351), cow peas (r = −0.544), and pigeon peas (r = −0.337). Focus group discussions participants were supportive of environmental protective measures to reverse negative land cover changes, while planting drought resistant trees, crop diversification and awareness creation among community members were recommended as the most ideal environmental management strategies.展开更多
This paper modifies and uses an advanced computable general equilibrium model coupled with biophysical data on land and water resources by Agro-Ecological Zone (AEZ) at the river basin level to examine the economy-wid...This paper modifies and uses an advanced computable general equilibrium model coupled with biophysical data on land and water resources by Agro-Ecological Zone (AEZ) at the river basin level to examine the economy-wide consequences of im-provements in water use efficiency (WUE) in irrigation in South Asia. This is the first time the benefits of such improvements have been evaluated in an economy-wide context. It shows that such improvements increase production of food items, enhance food exports, and significantly improve food security in South Asia. Improvement in water use efficiency also leads to lower food prices, provides the opportunity to extend irrigated areas, decreases demand for cropland, and enhances reforestation. Im-provement in water use efficiency in irrigation also generates important net GDP gains across the South Asia region. Investments in improved WUE of up to 40% can be economically justified in Bangladesh, India, and Sri Lanka. However, in Nepal, for an improvement of more than 20% in WUE, the economic gains are smaller than costs from the associated investments. In Pakistan and rest of South Asia, an improvement in WUE of up to 30% appears to be economically profitable.展开更多
Background: Ecosystem representation is one key component in assessing the biodiversity impacts of land-use changes that will irrevocably alter natural ecosystems. We show how detailed vegetation plot data can be use...Background: Ecosystem representation is one key component in assessing the biodiversity impacts of land-use changes that will irrevocably alter natural ecosystems. We show how detailed vegetation plot data can be used to assess the potential impact of inundation by a proposed hydroelectricity dam in the Mokihinui gorge, New Zealand, on representation of natural forests. Specifically we ask: 1) How well are the types of forest represented Locally, regionally, and nationally; and 2) How does the number of distinct communities (i.e. beta diversity) in the target catchment compare with other catchments nationally? Methods: For local and regional comparisons plant species composition was recorded on 45 objectively located 400 m2 vegetation plots established in each of three gorges, with one being the proposed inundation area of the Mokihinui lower gorge. The fuzzy classification framework of noise clustering was used to assign these plots to a specific alliance and association of a pre-existing national-scale classification. NationaLly, we examined the relationship between the number of alliances and associations in a catchment and either catchment size or the number of plots per catchment by fitting Generalised Additive Models. Results: The four alliances and five associations that were observed in the Mokihinui lower gorge arepresent in the region but limited locally. One association was narrowly distributed nationally, but is the mostfrequent association in the Mokihinui lower gorge; inundation may have consequences of national importance to its long-term persistence. That the Mokihinui lower gorge area had nearly twice as many plots that could not be assigned to pre- existing alliances and associations than either the Mokihinui upper or the Karamea lower gorges and proportionally more than the national dataset emphasises the compositional distinctiveness of this gorge. These outlier plots in the Mokihinui lower gorge may be unsorted assemblages of species or reflect sampling bias or that native- dominated woody riparian vegetation is rare on the landscape. At a national scale, the Mokihinui catchment has a higher diversity of forest alliances and associations (i.e. beta-diversity) than predicted based on catchment size and sampling intensity. Conclusions: Our analytical approach demonstrates one transparent solution to a common conservation planning problem: assessing how well ecosystems that will be destroyed by a proposed land-use change are represented using a multi-scale spatial and compositional framework. We provide a useful tool for assessing potential consequences of land-use change that can help guide decision making.展开更多
When a human lands from a high drop,there is a high risk of serious injury to the lower limbs.On the other hand,cats can withstand jumps and falls from heights without being fatally wounded,largely due to their impact...When a human lands from a high drop,there is a high risk of serious injury to the lower limbs.On the other hand,cats can withstand jumps and falls from heights without being fatally wounded,largely due to their impact-resistant paw pads.The aim of the present study was to investigate the biomechanism of impact resistance in cat paw pads,propose an optimal hierarchical Voronoi structure inspired by the paw pads,and apply the structure to bionic cushioning shoes to reduce the impact force of landing for humans.The microstructure of cat paw pads was observed via tissue section staining,and a simulation model was reconstructed based on CT to verify and optimize the structural cushioning capacity.The distribution pattern,wall thickness of compartments,thickness ratio of epidermis and dermis,and number of compartments in the model were changed and simulated to achieve an optimal composed structure.A bionic sole was 3D-printed,and its performance was evaluated via compression test and a jumping-landing experiment.The results show that cat paw pads are a spherical cap structure,divided from the outside to the inside into the epidermis,dermis,and compartments,each with different cushioning capacities.A finite element simulation of different cushioning structures was conducted in a cylinder with a diameter of 20 mm and a height of 10 mm,featuring a three-layer structure.The optimal configuration of the three layers should have a uniform distribution with 0.3–0.5 mm wall thickness,a 1:1–2 thickness ratio of epidermis and dermis,and 100–150 compartments.A bionic sole with an optimized structure can reduce the peak impact force and delay the peak arrival time.Its energy absorption rate is about 4 times that of standard sole.When jumping 80,100,and 120 cm,the normalized ground reaction force is also reduced by 8.7%,12.6%and 15.1%compared with standard shoes.This study provides theoretical and technical support for effective protection against human lower limb landing injuries.展开更多
文摘This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.
文摘Degradation of land/water ecotones in China is a serious problem and it is often neglected by people. The types of ecotone degradation are described and analyzed. The degradation of land/water ecotones enhanced the water quality reduction, bank erosion, desasters such as landslide, flood and drought, biodiversity reduction, lost of fertilized lands, decrease of the resource value of water scenic beauty and many others. The paper analyzes how these problems are related with each other.
文摘According to interpreting the LANDSAT TM/ETM images of 1986 and 2002, the spatial-temporal characteristics of land use changes were analyzed during 16 years base on GIS. In addition, the change of ecosystem services due to land use change was estimated by the method of vaulting global ecosystem services. The result shows that there were rapid increases in the area of cropland, saline-alkaline land, and dramatic decreases in grassland, water area and wetland between 1986 and 2002. The annual value of the ecosystem services was declined from 767.1 ×10s Yuan/a in 1986 to 624.1 × 10s Yuan/a in 2002, the estimated annual ecosystem service value declined by 18. 6 % (i. e. 1.6% per year) between 1986 and 2002. It indicates that there had been a sever harm to ecosystem functions and services, which results from the deterioration of ecological environment and the adjustment of land use that aim to currently economic benefit.
文摘This work assessed the impact of land use and land cover (LULC) change on the socio-economic conditions of the inhabitants in the Mount Bambouto Caldera from 1980-2016. To achieve this, three time series satellite images;Landsat Thematic Mapper (TM) (1980), Landsat Enhanced Thematic Mapper (ETM) (2001), and Landsat 8 Operational Land Imager (OLI) (2016) scenes were employed to investigate the changes in LULC. The use of satellite images was supplemented with individual interviews, discussions with focus groups and key informants, and direct field observations. Five categories of LULC classes were identified namely: thick woody vegetation (natural forest and oil palms), light vegetation (croplands), savannah (grasslands), buildings (settlements), and bare grounds. The results showed that between 1980 and 2016, croplands, buildings and bare lands increased by 4%, 0.43% and 5.7% respectively while savannah/grassland and natural forest decreased by 4.4% and 5.8% respectively. Household survey revealed soil fertility decline and lack of credit schemes to be major constraints to crop production. Many religious holidays contribute to seasonal food shortages and the community faces a host of socio-economic and institutional challenges. Consequently, majority of house-holds are destitute, live in abject poverty;which is an indication of the need for interventions by government and other development stakeholders to tackle the problems of soil fertility, land use change and food insecurity.
基金Supported by Zhaoqing Science and Technology Plan Project(2018N001)Special Innovative Project of Guangdong Education Department(Natural Science)(2018KTSCX251)
文摘In this paper,the theory and approach of environmental impact assessment in general land use planning are studied from different aspects.First,starting from the content and concept of general land use planning,the necessity of environmental impact assessment in general land use planning is illustrated.On the basis of its evaluation theories and methodologies,it attempts to establish index system of environmental impact assessment in general land use planning,and point outs that current general land use planning requires public participation.
文摘Anthropogenic activities are increasingly catalyzing natural climatic factors that drive land cover change at different spatial scales. Available land cover data of the Mara River basin however give a broader picture of the entire basin regardless of the heterogeneity that exists at the sub-catchment level. This study sought to establish sub-catchment specific information on land cover changes through examination of satellite images of four Mara River sub-catchments (Amala, Nyangores, Talek and Sand River) for the period 1987-2017. The relationship between temperature, rainfall and land cover was also computed. In addition, a household survey and focus group discussions were conducted in each sub-catchments to establish the socio-economic impacts of land cover change on the community’s wellbeing. Forest cover was dominant in Amala (39.8%) and Nyangores (43.7%) sub-catchments in 1987 but by 2017 crop lands had surpassed forest cover in the two sub-catchments, accounting for 53.2% and 45.7%, respectively. However, in Talek (52.8%) and Sand River (47.4%) sub-catchments, grassland was the dominant land cover type in 1987 and after the 30 year period, grasslands remained dominant in Sand River, while shrub land became dominant in Talek sub-catchment. A weak positive correlation was observed between rainfall and forest cover, shrub land and cropland, while a negative correlation was observed between rainfall and bare land. Average temperature showed a positive moderate correlation with bare land and built up areas. Analysis of survey data revealed that livestock keeping, temperature increase, type of trees, education level of household head and weak environmental laws were the main drivers of land cover change (P −0.587), beans (r = −0.5459), sorghum (r = −0.351), cow peas (r = −0.544), and pigeon peas (r = −0.337). Focus group discussions participants were supportive of environmental protective measures to reverse negative land cover changes, while planting drought resistant trees, crop diversification and awareness creation among community members were recommended as the most ideal environmental management strategies.
文摘This paper modifies and uses an advanced computable general equilibrium model coupled with biophysical data on land and water resources by Agro-Ecological Zone (AEZ) at the river basin level to examine the economy-wide consequences of im-provements in water use efficiency (WUE) in irrigation in South Asia. This is the first time the benefits of such improvements have been evaluated in an economy-wide context. It shows that such improvements increase production of food items, enhance food exports, and significantly improve food security in South Asia. Improvement in water use efficiency also leads to lower food prices, provides the opportunity to extend irrigated areas, decreases demand for cropland, and enhances reforestation. Im-provement in water use efficiency in irrigation also generates important net GDP gains across the South Asia region. Investments in improved WUE of up to 40% can be economically justified in Bangladesh, India, and Sri Lanka. However, in Nepal, for an improvement of more than 20% in WUE, the economic gains are smaller than costs from the associated investments. In Pakistan and rest of South Asia, an improvement in WUE of up to 30% appears to be economically profitable.
基金funded by Meridian Energy Limited,New Zealandby Core funding for Crown Research Institutes from the New Zealand Ministry of Business,Innovation and Employment’s Science and Innovation Group
文摘Background: Ecosystem representation is one key component in assessing the biodiversity impacts of land-use changes that will irrevocably alter natural ecosystems. We show how detailed vegetation plot data can be used to assess the potential impact of inundation by a proposed hydroelectricity dam in the Mokihinui gorge, New Zealand, on representation of natural forests. Specifically we ask: 1) How well are the types of forest represented Locally, regionally, and nationally; and 2) How does the number of distinct communities (i.e. beta diversity) in the target catchment compare with other catchments nationally? Methods: For local and regional comparisons plant species composition was recorded on 45 objectively located 400 m2 vegetation plots established in each of three gorges, with one being the proposed inundation area of the Mokihinui lower gorge. The fuzzy classification framework of noise clustering was used to assign these plots to a specific alliance and association of a pre-existing national-scale classification. NationaLly, we examined the relationship between the number of alliances and associations in a catchment and either catchment size or the number of plots per catchment by fitting Generalised Additive Models. Results: The four alliances and five associations that were observed in the Mokihinui lower gorge arepresent in the region but limited locally. One association was narrowly distributed nationally, but is the mostfrequent association in the Mokihinui lower gorge; inundation may have consequences of national importance to its long-term persistence. That the Mokihinui lower gorge area had nearly twice as many plots that could not be assigned to pre- existing alliances and associations than either the Mokihinui upper or the Karamea lower gorges and proportionally more than the national dataset emphasises the compositional distinctiveness of this gorge. These outlier plots in the Mokihinui lower gorge may be unsorted assemblages of species or reflect sampling bias or that native- dominated woody riparian vegetation is rare on the landscape. At a national scale, the Mokihinui catchment has a higher diversity of forest alliances and associations (i.e. beta-diversity) than predicted based on catchment size and sampling intensity. Conclusions: Our analytical approach demonstrates one transparent solution to a common conservation planning problem: assessing how well ecosystems that will be destroyed by a proposed land-use change are represented using a multi-scale spatial and compositional framework. We provide a useful tool for assessing potential consequences of land-use change that can help guide decision making.
基金approved by the Science and Ethics Committee of the School of Biological Science and Medical Engineering at Beihang University(protocol code:BM201900125).
文摘When a human lands from a high drop,there is a high risk of serious injury to the lower limbs.On the other hand,cats can withstand jumps and falls from heights without being fatally wounded,largely due to their impact-resistant paw pads.The aim of the present study was to investigate the biomechanism of impact resistance in cat paw pads,propose an optimal hierarchical Voronoi structure inspired by the paw pads,and apply the structure to bionic cushioning shoes to reduce the impact force of landing for humans.The microstructure of cat paw pads was observed via tissue section staining,and a simulation model was reconstructed based on CT to verify and optimize the structural cushioning capacity.The distribution pattern,wall thickness of compartments,thickness ratio of epidermis and dermis,and number of compartments in the model were changed and simulated to achieve an optimal composed structure.A bionic sole was 3D-printed,and its performance was evaluated via compression test and a jumping-landing experiment.The results show that cat paw pads are a spherical cap structure,divided from the outside to the inside into the epidermis,dermis,and compartments,each with different cushioning capacities.A finite element simulation of different cushioning structures was conducted in a cylinder with a diameter of 20 mm and a height of 10 mm,featuring a three-layer structure.The optimal configuration of the three layers should have a uniform distribution with 0.3–0.5 mm wall thickness,a 1:1–2 thickness ratio of epidermis and dermis,and 100–150 compartments.A bionic sole with an optimized structure can reduce the peak impact force and delay the peak arrival time.Its energy absorption rate is about 4 times that of standard sole.When jumping 80,100,and 120 cm,the normalized ground reaction force is also reduced by 8.7%,12.6%and 15.1%compared with standard shoes.This study provides theoretical and technical support for effective protection against human lower limb landing injuries.