The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th...The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.展开更多
In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to A...In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.展开更多
Estimation of large-scale land surface temperature from satellite images is of great importance for the study of climate change. This is especially true for the most challenging areas, such as the Tibetan Plateau (TP...Estimation of large-scale land surface temperature from satellite images is of great importance for the study of climate change. This is especially true for the most challenging areas, such as the Tibetan Plateau (TP). In this paper, two split window algorithms (SWAs), one for the NOAA’s Advanced Very High Resolu-tion Radiometer (AVHRR), and the other for the Moderate Resolution Imaging Spectroradiometer (MODIS), were applied to retrieve land surface temperature (LST) over the TP simultaneously. AVHRR and MODIS data from 17 January, 14 April, 23 July, and 16 October 2003 were selected as the cases for winter, spring, summer, and autumn, respectively. Firstly, two key parameters (emissivity and water vapor content) were calculated at the pixel scale. Then, the derived LST was compared with in situ measurements from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the TP (CAMP/Tibet) area. They were in good accordance with each other, with an average percentage error (PE) of 10.5% for AVHRR data and 8.3% for MODIS data, meaning the adopted SWAs were applicable in the TP area. The derived LST also showed a wide range and a clear seasonal difference. The results from AVHRR were also in agreement with MODIS, with the latter usually displaying a higher level of accuracy.展开更多
The Tibetan Plateau(TP) has powerful dynamics and thermal effects, which makes the interaction between its land and atmosphere significantly affect climate and environment in the regional or global area. By retrospect...The Tibetan Plateau(TP) has powerful dynamics and thermal effects, which makes the interaction between its land and atmosphere significantly affect climate and environment in the regional or global area. By retrospecting the latest research progress in the simulation of land-surface processes(LSPs) over the past 20 years, this study discusses both the simulation ability of land-surface models(LSMs) and the modification of parameterization schemes from two perspectives, the models' applicability and improved parameterization schemes. Our review suggests that different LSMs can well capture the spatiotemporal variations of the physical quantities of LSPs; but none of them can be fully applied to the plateau, meaning that all need to be revised according to the characteristics specific to the TP. Avoiding the unstable iterative computation and determining the freeze-thaw critical temperature according to the thermodynamic equilibrium equation, the unreasonable freeze-thaw parameterization scheme can be improved. Due to the complex underlying surface of the TP, no parameterization scheme of roughness length can well simulate the various characteristics of the turbulent flux over the TP at different temporal scales. The uniform soil thermodynamic and hydraulic parameterization scheme is unreasonable when it is applied to the plateau, as a result of the strong soil heterogeneity. There is little research on the snow-cover process so far,and the improved scheme has no advantage over the original one due to the lack of some related physical processes. The constant interaction among subprocesses of LSPs makes the improvement of a multiparameterization scheme yield better simulation results. According to the review of existing research, adding high-quality observation stations, developing a parameterization scheme suitable for the special LSPs of the TP, and adjusting the model structures can be helpful to the simulation of LSPs on the TP.展开更多
正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8...正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.展开更多
The water and energy cycle in the Tibetan Plateau is an important component of Monsoon Asia and the global energy and water cycle. Using data at a CEOP (Coordinated Enhanced Observing Period)-Tibet site, this study ...The water and energy cycle in the Tibetan Plateau is an important component of Monsoon Asia and the global energy and water cycle. Using data at a CEOP (Coordinated Enhanced Observing Period)-Tibet site, this study presents a first-order evaluation on the skill of weather forecasting from GCMs and satellites in producing precipitation and radiation estimates. The satellite data, together with the satellite leaf area index, are then integrated into a land data assimilation system (LDAS-UT) to estimate the soil moisture and surface energy budget on the Plateau. The system directly assimilates the satellite microwave brightness temperature, which is strongly affected by soil moisture but not by cloud layers, into a simple biosphere model. A major feature of this system is a dual-pass assimilation technique, which can auto-calibrate model parameters in one pass and estimate the soil moisture and energy budget in the other pass. The system outputs, including soil moisture, surface temperature, surface energy partition, and the Bowen ratio, are compared with observations, land surface models, the Global Land Data Assimilation System, and four general circulation models. The results show that this satellite data-based system has a high potential for a reliable estimation of the regional surface energy budget on the Plateau.展开更多
Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationa...Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) satellite data and the China Land Data Assimilation System (CLDAS) meteorological forcing dataset CLDAS-V2.0 were applied for the retrieval of broadband albedo, land surface temperature (LST), radiation flux components, and turbulent heat fluxes over the Tibetan Plateau (TP). The FY-4A/AGRI and CLDAS-V2.0 data from 12 March 2018 to 30 April 2018 were first used to estimate the hourly turbulent heat fluxes over the TP. The time series data of in-situ measurements from the Tibetan Observation and Research Platform were divided into two halves-one for developing retrieval algorithms for broadband albedo and LST based on FY-4A, and the other for the cross validation. Results show the root-mean-square errors (RMSEs) of the FY-4A retrieved broadband albedo and LST were 0.0309 and 3.85 K, respectively, which verifies the applicability of the retrieval method. The RMSEs of the downwelling/upwelling shortwave radiation flux and downwelling/upwelling longwave radiation flux were 138.87/32.78 W m^(−2) and 51.55/17.92 W m^(−2), respectively, and the RMSEs of net radiation flux, sensible heat flux, and latent heat flux were 58.88 W m^(−2), 82.56 W m^(−2) and 72.46 W m^(−2), respectively. The spatial distributions and diurnal variations of LST and turbulent heat fluxes were further analyzed in detail.展开更多
Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau.It plays a crucial role in runoff regulation.Investigations on the mechanisms of water and heat exchanges are necessary to underst...Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau.It plays a crucial role in runoff regulation.Investigations on the mechanisms of water and heat exchanges are necessary to understand the land surface processes over the alpine wetland.This study explores the characteristics of hydro-meteorological factors with in situ observations and uses the Community Land Model 5 to identify the main factors controlling water and heat exchanges.Latent heat flux and thermal roughness length were found to be greater in the warm season(June–August)than in the cold season(December–February),with a frozen depth of 20–40 cm over the alpine wetland.The transfers of heat fluxes were mainly controlled by longwave radiation and air temperature and affected by root distribution.Air pressure and stomatal conductance were also important to latent heat flux,and soil solid water content was important to sensible heat flux.Soil temperature was dominated by longwave radiation and air temperature,with crucial surface parameters of initial soil liquid water content and total water content.The atmospheric control factors transitioned to precipitation and air temperature for soil moisture,especially at the shallow layer(5 cm).Meanwhile,the more influential surface parameters were root distribution and stomatal conductance in the warm season and initial soil liquid water content and total water content in the cold season.This work contributes to the research on the land surface processes over the alpine wetland and is helpful to wetland protection.展开更多
Tibetan Plateau(TP) is known as the “Third Pole” of the Earth. Any changes in land surface processes on the TP can have an unneglectable impact on regional and global climate. With the warming and wetting climate, t...Tibetan Plateau(TP) is known as the “Third Pole” of the Earth. Any changes in land surface processes on the TP can have an unneglectable impact on regional and global climate. With the warming and wetting climate, the land surface of the TP saw a darkening trend featured by decreasing surface albedo over the past decades, primarily due to the melting of glaciers, snow,and greening vegetation. Recent studies have investigated the effects of the TP land surface darkening on the field of climate, but these assessments only address one aspect of the feedback loop. How do these darkening-induced climate changes affect the frozen ground and ecosystems on the TP? In this study, we investigated the impact of TP land surface darkening on regional frozen ground and ecosystems using the state-of-the-art land surface model ORCHIDEE-MICT. Our model results show that darkening-induced climate changes on the TP will lead to a reduction in the area of regional frozen ground by 1.1×10~4±0.019×10~4km~2, a deepening of the regional permafrost active layer by 0.06±0.0004 m, and a decrease in the maximum freezing depth of regional seasonal frozen ground by 0.06±0.0016 m compared to the scenario without TP land surface darkening.Furthermore, the darkening-induced climate change on the TP will result in an increase in the regional leaf area index and an enhancement in the regional gross primary productivity, ultimately leading to an increase in regional terrestrial carbon stock by0.81±0.001 PgC. This study addresses the remaining piece of the puzzle in the feedback loop of TP land surface darkening, and improves our understanding of interactions across multiple spheres on the TP. The exacerbated regional permafrost degradation and increasing regional terrestrial carbon stock induced by TP land surface darkening should be considered in the development of national ecological security barrier.展开更多
The Tibetan Plateau(TP)is highly sensitive to even minor fluctuations in land surface temperature(LST),which can result in permafrost melting and degradation of alpine grasslands,leading to serious ecological conseque...The Tibetan Plateau(TP)is highly sensitive to even minor fluctuations in land surface temperature(LST),which can result in permafrost melting and degradation of alpine grasslands,leading to serious ecological consequences.Therefore,it is crucial to have high-temporal-resolution and seamless hourly estimating and monitoring of LST for a better understanding of climate change on the TP.Here,we employed Himawari-8 satellite,Digital Elevation Model(DEM),ERA5 reanalysis and meteorological station observations data to develop a new LightGBM framework(called Geo-LightGBM)for estimating LST on the TP,and then analyzed the spatiotemporal variations of those LST.Geo-LightGBM demonstrated excellent LST estimation accuracy,with an R2(coefficient of determination)of 0.971,RMSE(root-mean-square error)of 2.479℃,and MAE(mean absolute error)of 1.510℃.The estimated LST values for the year 2020 agreed well with observed values,with remarkable differences in hourly LST variations.Meanwhile,the estimated LST was more accurate than that from FY-4A.Spatially,there were two high LST centers,located in the Yarlung Zangbo River Basin and the Qaidam Basin,and a low LST center located in the central TP.The SHAP(SHapley Additive exPlanations)and correlation analyses revealed DSCS(the mean ground downward shortwave radiation under clear-sky conditions)to be the most importantly input variable for estimating LST.Spatiotemporal dummy variables(e.g.,longitude,latitude,DEM)were also found to be crucial for model accuracy improvement.Our findings indicate the potential for constructing a high-precision and seamless 24-h LST real-time retrieval and monitoring platform for the TP by combining satellite and China's independently developed CLDAS(China Land Data Assimilation System)data in future.展开更多
Time series of MODIS land surface temperature(Ts) and normalized difference vegetation index(NDVI) products,combined with digital elevation model(DEM) and meteorological data from 2001 to 2012,were used to map the spa...Time series of MODIS land surface temperature(Ts) and normalized difference vegetation index(NDVI) products,combined with digital elevation model(DEM) and meteorological data from 2001 to 2012,were used to map the spatial distribution of monthly mean air temperature over the Northern Tibetan Plateau(NTP). A time series analysis and a regression analysis of monthly mean land surface temperature(Ts) and air temperature(Ta) were conducted using ordinary linear regression(OLR) and geographical weighted regression(GWR). The analyses showed that GWR,which considers MODIS Ts,NDVI and elevation as independent variables,yielded much better results [RAdj2> 0.79; root-mean-square error(RMSE) =0.51℃–1.12℃] associated with estimating Tacompared to those from OLR(RAdj2= 0.40-0.78; RMSE = 1.60℃–4.38℃).In addition,some characteristics of the spatial distribution of monthly Taand the difference between the surface and air temperature(Td) are as follows. According to the analysis of the 0℃ and 10℃ isothermals,Tavalues over the NTP at elevations of 4000–5000 m were greater than 10℃ in the summer(from May to October),and Tavalues at an elevation of3200 m dropped below 0℃ in the winter(from November to April). Taexhibited an increasing trend from northwest to southeast. Except in the southeastern area of the NTP,T d values in other areas were all larger than 0℃ in the winter.展开更多
Snow cover on the Tibetan Plateau(TP)is closely related to regional and continental biological and hydrological processes.The vast snow cover,special climatic conditions,and sparse vegetative cover over the TP facilit...Snow cover on the Tibetan Plateau(TP)is closely related to regional and continental biological and hydrological processes.The vast snow cover,special climatic conditions,and sparse vegetative cover over the TP facilitate the occurrence of blowing snow,leading to substantial heterogeneities in the snow cover and great promotion in the moisture supply from the land surface to the overlying atmospheric boundary layer.However,blowing-snow processes are significantly misrepresented or even neglected in current models,which causes considerable uncertainties of numerical model simulations and leads to erroneous estimates of snow-related processes in mountainous terrain.We present in this paper a brief review of our work in the past 5 years to serve as a basis for further development and improvement of the land-surface model.These studies can be divided into three parts:detection of the problems,development of the land-surface model,and application of the coupled model over the TP(the logical framework is presented in Figure 1).The origin and advances in the development of a land-surface model with consideration of blowing-snow effects are described herein;and the importance of blowing-snow processes in the land-surface model,especially over the TP,is highlighted.We expect that the blowingsnow studies over the TP will play a key role in documenting and understanding the land-surface processes(LSPs)and the cryospheric changes over the TP.展开更多
Soil is heterogeneous and has different thermal and hydraulic properties, causing varied behavior in heat and mois- ture transport. Therefore, soil has an important effect on lanatmosphere interactions. In this study,...Soil is heterogeneous and has different thermal and hydraulic properties, causing varied behavior in heat and mois- ture transport. Therefore, soil has an important effect on lanatmosphere interactions. In this study, an improved soil parameterization scheme that considers gravel and organic matter in the soil was introduced into CLM4.5 (Com- munity Land Model). By using data from the Zoige and Madoi sites on the Tibetan Plateau, the ability of the model to simultaneously simulate the duration of freeze-thaw periods, soil temperature, soil moisture, and surface energy during freeze-thaw processes, was validated. The results indicated that: (1) the new parameterization performed bet- ter in simulating the duration of the frozen, thawing, unfrozen, and freezing periods; (2) with the new scheme, the soil thermal conductivity values were decreased; (3) the new parameterization improved soil temperature simulation and effectively decreased cold biases; (4) the new parameterization scheme effectively decreased the dry biases of soil li- quid water content during the freezing, completely frozen, and thawing periods, but increased the wet biases during the completely thawed period; and (5) the net radiation, latent heat flux, and soil surface heat flux of the Zoige and Madoi sites were much improved by the new organic matter and thermal conductivity parameterization.展开更多
We analyzed the spatiotemporal variations in surface air temperature and key climate change indicators over the Tibetan Plateau during a common valid period from 1979 to 2018 to evaluate the performance of different d...We analyzed the spatiotemporal variations in surface air temperature and key climate change indicators over the Tibetan Plateau during a common valid period from 1979 to 2018 to evaluate the performance of different datasets on various timescales.We used observations from 22 in-situ observation sites,the CRA-40/Land(CRA)reanalysis dataset,the China Meteorological Forcing Dataset(CMFD),and the ERA-Interim(ERA)reanalysis dataset.The three datasets are spatially consistent with the in-situ observations,but slightly underestimate the annual mean surface air temperature.The daily mean surface air temperature estimated by the CRA,CMFD,and ERA datasets is closer to the in-situ observations after correction for elevation.The CMFD shows the best performance in simulating the annual mean surface air temperature over the Tibetan Plateau,followed by the CRA and ERA datasets with comparable performances.The CMFD is relatively accurate in simulating the daily mean surface air temperature over the Tibetan Plateau on an annual scale,whereas both the CRA and ERA datasets perform better in summer than in winter.The increasing trends in the annual mean surface air temperature over the Tibetan Plateau from 1979 to 2018 reflected by the CRA dataset and the CMFD are 0.5℃(10 yr)^(-1),similar to the in-situ observations,whereas the warming rate in the ERA dataset is only 0.3℃(10 yr)^(-1).The trends in the length of the growing season derived from the in-situ observations,the CRA,CMFD,and ERA datasets are 5.3,4.8,6.1,and 3.2 day(10 yr)^(-1),respectively.Our analyses suggest that both the CRA dataset and the CMFD perform better than the ERA dataset in modeling the changes in surface air temperature over the Tibetan Plateau.展开更多
In this study,67 surface sediment samples collected from Nam Co in central Tibet were analyzed for total carbon,total organic carbon and total nitrogen,and 51 of these samples were also analyzed for n-alkanes.The orig...In this study,67 surface sediment samples collected from Nam Co in central Tibet were analyzed for total carbon,total organic carbon and total nitrogen,and 51 of these samples were also analyzed for n-alkanes.The origin and spatial distribution of organic matter were then investigated using these proxies,and the control factors responsible for the spatial distribution patterns and paleolimnological significance were discussed.The results indicated that the origin of organic matter in surface sediment of Nam Co is consistent with the sources of n-alkanes,which were primarily submerged plants,followed by terrestrial plants,and then aquatic algae and bacteria.The organic matter in surface sediments of the lake showed typical spatial variability.Because of the great influence of underwater topography,river inputs and water quality,the spatial distribution of organic matter is enriched from the source to the deposit center.This spatial variability of organic matter in the lake indicates that the sediments in different areas have different sensitivities to environmental changes,which is important to reconstruction of paleoenvironments and paleoclimate using lake sediment cores.展开更多
On the gradient observational data of the atmospheric surface layer from September 1997 to December 1998 collected by two sets of Automatic Weather Station (AWS) installed in Gaize and Shiquanhe on the western Tibetan...On the gradient observational data of the atmospheric surface layer from September 1997 to December 1998 collected by two sets of Automatic Weather Station (AWS) installed in Gaize and Shiquanhe on the western Tibetan Plateau, mean surface roughness lengths at the two stations above are determined to be 2.7 and 2.9 cm, respectively. The bulk transfer coefficients each day are computed by the profile-flux method, means of the bulk transfer coefficient for momentum (i.e. drag coefficient) in 1998 are 4.83×10-3 and 4.75×103 at the two stations. The surface fluxes of momentum, sensible heat and latent heat each day are further estimated by the bulk formulas, annual mean of these fluxes is 3.4×10-2 and 1.8×102N/m2, 73.1 and 67.2 W/m2, 15.4 and 2.9 W/m2, respectively. The diurnal and seasonal variations are obtained by a composite method and the relationships among the heat transfers between land and atmosphere, plateau monsoon and plateau rain season are also discussed.展开更多
The observational data of Beiluhe test of the Qinghai-Xizang railway in June 2002 are used as forcing field of the surface model to study the simulation performance in Qinghai-Xizang Plateau. The simulation result sho...The observational data of Beiluhe test of the Qinghai-Xizang railway in June 2002 are used as forcing field of the surface model to study the simulation performance in Qinghai-Xizang Plateau. The simulation result shows that the model (NCAR/LSM) can present the surface character tendency reasonably under observation forcing. In NCAR/LSM, the descriptions of the surface vegetation type in Qinghai-Xizang Plateau have much difference to what is actually happening. According to the actual characteristic of the surface, we define the grassland vegetation coverage rate is 0.6, and the vegetation canopy is 0.15 m, and the displacement height is 0.10 m. Compared the results with the old model's parameter in experiment, we find that the simulation air (2 m) temperature and the ground temperature are close to those of the observation, and the simulation temperature of peak value is better, and the simulation flux of the ground is sure to be improved too. So, if the surface and vegetation parameters are revised in LSM model, the simulation capability of the land surface process model can be improved effectively in Qinghai-Xizang Plateau.展开更多
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been sho...Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.展开更多
基金supported jointly by the National Natural Science Foundation of China(Grant No.91337216)the Special Fund for Public Welfare Industry(Meteorology),administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)the CAS XDA(Grant No.11010402)
文摘The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.
基金the National Natural Science Foundation of China (Nos. 41075053 and 41275016)
文摘In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.
基金This research was under theauspices of the Opening Foundation of the Institute ofPlateau Meteorology, China Meteorological Administra-tion (Grant No. LPM2006011)the National Natural Sci-ence Foundation of China (Grant Nos. 40905017, 40825015and 40810059006)+2 种基金the China Postdoctoral Science Foun-dation (Grant No. 20090450592)the Arid Meteorology Science Foundation of the Gansu Provincial Key Labo-ratory of Arid Climatic Change and Disaster Reduction,Lanzhou Institute of Arid Meteorology, China Meteorolog-ical Administration (Grant No. IAM200810)the EU-FP7 project "CEOP-AEGIS" (Grant No. 212921)
文摘Estimation of large-scale land surface temperature from satellite images is of great importance for the study of climate change. This is especially true for the most challenging areas, such as the Tibetan Plateau (TP). In this paper, two split window algorithms (SWAs), one for the NOAA’s Advanced Very High Resolu-tion Radiometer (AVHRR), and the other for the Moderate Resolution Imaging Spectroradiometer (MODIS), were applied to retrieve land surface temperature (LST) over the TP simultaneously. AVHRR and MODIS data from 17 January, 14 April, 23 July, and 16 October 2003 were selected as the cases for winter, spring, summer, and autumn, respectively. Firstly, two key parameters (emissivity and water vapor content) were calculated at the pixel scale. Then, the derived LST was compared with in situ measurements from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the TP (CAMP/Tibet) area. They were in good accordance with each other, with an average percentage error (PE) of 10.5% for AVHRR data and 8.3% for MODIS data, meaning the adopted SWAs were applicable in the TP area. The derived LST also showed a wide range and a clear seasonal difference. The results from AVHRR were also in agreement with MODIS, with the latter usually displaying a higher level of accuracy.
基金funded by the National Natural Science Foundation of China (41571066, 41601077, and 41771068)the Strategic Priority Research Pro gram of the Chinese Academy of Sciences (CAS) (XDA20100102, XDA19070204)+2 种基金the CAS "Light of West China" Programthe Youth Innovation Promo tion Association CAS (2018460)the Program of China Scholarship Council (201804910129)
文摘The Tibetan Plateau(TP) has powerful dynamics and thermal effects, which makes the interaction between its land and atmosphere significantly affect climate and environment in the regional or global area. By retrospecting the latest research progress in the simulation of land-surface processes(LSPs) over the past 20 years, this study discusses both the simulation ability of land-surface models(LSMs) and the modification of parameterization schemes from two perspectives, the models' applicability and improved parameterization schemes. Our review suggests that different LSMs can well capture the spatiotemporal variations of the physical quantities of LSPs; but none of them can be fully applied to the plateau, meaning that all need to be revised according to the characteristics specific to the TP. Avoiding the unstable iterative computation and determining the freeze-thaw critical temperature according to the thermodynamic equilibrium equation, the unreasonable freeze-thaw parameterization scheme can be improved. Due to the complex underlying surface of the TP, no parameterization scheme of roughness length can well simulate the various characteristics of the turbulent flux over the TP at different temporal scales. The uniform soil thermodynamic and hydraulic parameterization scheme is unreasonable when it is applied to the plateau, as a result of the strong soil heterogeneity. There is little research on the snow-cover process so far,and the improved scheme has no advantage over the original one due to the lack of some related physical processes. The constant interaction among subprocesses of LSPs makes the improvement of a multiparameterization scheme yield better simulation results. According to the review of existing research, adding high-quality observation stations, developing a parameterization scheme suitable for the special LSPs of the TP, and adjusting the model structures can be helpful to the simulation of LSPs on the TP.
基金supported by the National Natural Science Foundation of China,under the project entitled“The study of land-atmosphere water and heat flux interaction over the complex terrain of the north and south slopes of the Qomolangma region"[grant number 42230610]a Ministry of Science and Technology of China project called“Landatmosphere interaction and its climate effect of the Second Tibetan Plateau Scientific Expedition and Research Program"[grant number 2019QzKK0103]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[2022069].
文摘正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.
基金the "100-Talent" Project of Chinese Academy of Sciences
文摘The water and energy cycle in the Tibetan Plateau is an important component of Monsoon Asia and the global energy and water cycle. Using data at a CEOP (Coordinated Enhanced Observing Period)-Tibet site, this study presents a first-order evaluation on the skill of weather forecasting from GCMs and satellites in producing precipitation and radiation estimates. The satellite data, together with the satellite leaf area index, are then integrated into a land data assimilation system (LDAS-UT) to estimate the soil moisture and surface energy budget on the Plateau. The system directly assimilates the satellite microwave brightness temperature, which is strongly affected by soil moisture but not by cloud layers, into a simple biosphere model. A major feature of this system is a dual-pass assimilation technique, which can auto-calibrate model parameters in one pass and estimate the soil moisture and energy budget in the other pass. The system outputs, including soil moisture, surface temperature, surface energy partition, and the Bowen ratio, are compared with observations, land surface models, the Global Land Data Assimilation System, and four general circulation models. The results show that this satellite data-based system has a high potential for a reliable estimation of the regional surface energy budget on the Plateau.
基金This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Pro-gram(Grant No.2019QZKK010305)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA20060101)+2 种基金the National Natural Science Foundation of China(Grant Nos.41875031,91837208,41522501 and 41275028)the Chinese Academy of Sciences Basic Frontier Sci-ence Research Program from 0 to 1 Original Innovation Project(Grant No.ZDBS-LY-DQC005-01)the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC019).
文摘Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) satellite data and the China Land Data Assimilation System (CLDAS) meteorological forcing dataset CLDAS-V2.0 were applied for the retrieval of broadband albedo, land surface temperature (LST), radiation flux components, and turbulent heat fluxes over the Tibetan Plateau (TP). The FY-4A/AGRI and CLDAS-V2.0 data from 12 March 2018 to 30 April 2018 were first used to estimate the hourly turbulent heat fluxes over the TP. The time series data of in-situ measurements from the Tibetan Observation and Research Platform were divided into two halves-one for developing retrieval algorithms for broadband albedo and LST based on FY-4A, and the other for the cross validation. Results show the root-mean-square errors (RMSEs) of the FY-4A retrieved broadband albedo and LST were 0.0309 and 3.85 K, respectively, which verifies the applicability of the retrieval method. The RMSEs of the downwelling/upwelling shortwave radiation flux and downwelling/upwelling longwave radiation flux were 138.87/32.78 W m^(−2) and 51.55/17.92 W m^(−2), respectively, and the RMSEs of net radiation flux, sensible heat flux, and latent heat flux were 58.88 W m^(−2), 82.56 W m^(−2) and 72.46 W m^(−2), respectively. The spatial distributions and diurnal variations of LST and turbulent heat fluxes were further analyzed in detail.
基金supported by the National Natural Science Foundation of China(Grant Nos.42005075,41975130)Natural Science Foundation of Gansu Province(Grant No.21JR7RA047)+1 种基金Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(Grant No.PAEKL-2022-K03)the State Key Laboratory of Cryospheric Science(Grant No.SKLCS-ZZ-2023,SKLCS-ZZ-2022).
文摘Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau.It plays a crucial role in runoff regulation.Investigations on the mechanisms of water and heat exchanges are necessary to understand the land surface processes over the alpine wetland.This study explores the characteristics of hydro-meteorological factors with in situ observations and uses the Community Land Model 5 to identify the main factors controlling water and heat exchanges.Latent heat flux and thermal roughness length were found to be greater in the warm season(June–August)than in the cold season(December–February),with a frozen depth of 20–40 cm over the alpine wetland.The transfers of heat fluxes were mainly controlled by longwave radiation and air temperature and affected by root distribution.Air pressure and stomatal conductance were also important to latent heat flux,and soil solid water content was important to sensible heat flux.Soil temperature was dominated by longwave radiation and air temperature,with crucial surface parameters of initial soil liquid water content and total water content.The atmospheric control factors transitioned to precipitation and air temperature for soil moisture,especially at the shallow layer(5 cm).Meanwhile,the more influential surface parameters were root distribution and stomatal conductance in the warm season and initial soil liquid water content and total water content in the cold season.This work contributes to the research on the land surface processes over the alpine wetland and is helpful to wetland protection.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant No.2019QZKK0208)the National Natural Science Foundation of China (Grant Nos.41988101,42425106)。
文摘Tibetan Plateau(TP) is known as the “Third Pole” of the Earth. Any changes in land surface processes on the TP can have an unneglectable impact on regional and global climate. With the warming and wetting climate, the land surface of the TP saw a darkening trend featured by decreasing surface albedo over the past decades, primarily due to the melting of glaciers, snow,and greening vegetation. Recent studies have investigated the effects of the TP land surface darkening on the field of climate, but these assessments only address one aspect of the feedback loop. How do these darkening-induced climate changes affect the frozen ground and ecosystems on the TP? In this study, we investigated the impact of TP land surface darkening on regional frozen ground and ecosystems using the state-of-the-art land surface model ORCHIDEE-MICT. Our model results show that darkening-induced climate changes on the TP will lead to a reduction in the area of regional frozen ground by 1.1×10~4±0.019×10~4km~2, a deepening of the regional permafrost active layer by 0.06±0.0004 m, and a decrease in the maximum freezing depth of regional seasonal frozen ground by 0.06±0.0016 m compared to the scenario without TP land surface darkening.Furthermore, the darkening-induced climate change on the TP will result in an increase in the regional leaf area index and an enhancement in the regional gross primary productivity, ultimately leading to an increase in regional terrestrial carbon stock by0.81±0.001 PgC. This study addresses the remaining piece of the puzzle in the feedback loop of TP land surface darkening, and improves our understanding of interactions across multiple spheres on the TP. The exacerbated regional permafrost degradation and increasing regional terrestrial carbon stock induced by TP land surface darkening should be considered in the development of national ecological security barrier.
基金This work was supported by the National Natural Science Foundation of China(42306270 and 42122047)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(2023Y004,2023Z004 and 2023Z022).
文摘The Tibetan Plateau(TP)is highly sensitive to even minor fluctuations in land surface temperature(LST),which can result in permafrost melting and degradation of alpine grasslands,leading to serious ecological consequences.Therefore,it is crucial to have high-temporal-resolution and seamless hourly estimating and monitoring of LST for a better understanding of climate change on the TP.Here,we employed Himawari-8 satellite,Digital Elevation Model(DEM),ERA5 reanalysis and meteorological station observations data to develop a new LightGBM framework(called Geo-LightGBM)for estimating LST on the TP,and then analyzed the spatiotemporal variations of those LST.Geo-LightGBM demonstrated excellent LST estimation accuracy,with an R2(coefficient of determination)of 0.971,RMSE(root-mean-square error)of 2.479℃,and MAE(mean absolute error)of 1.510℃.The estimated LST values for the year 2020 agreed well with observed values,with remarkable differences in hourly LST variations.Meanwhile,the estimated LST was more accurate than that from FY-4A.Spatially,there were two high LST centers,located in the Yarlung Zangbo River Basin and the Qaidam Basin,and a low LST center located in the central TP.The SHAP(SHapley Additive exPlanations)and correlation analyses revealed DSCS(the mean ground downward shortwave radiation under clear-sky conditions)to be the most importantly input variable for estimating LST.Spatiotemporal dummy variables(e.g.,longitude,latitude,DEM)were also found to be crucial for model accuracy improvement.Our findings indicate the potential for constructing a high-precision and seamless 24-h LST real-time retrieval and monitoring platform for the TP by combining satellite and China's independently developed CLDAS(China Land Data Assimilation System)data in future.
基金funded by the Chinese Academy of Science“Hundred Talents”program (Dr.Weiqiang MA)the National Natural Science Foundation of China (Grant Nos.41375009,91337212,41275010 and 41522501 and 41661144043)+3 种基金Study on long term changes of surface heat source in northern Tibetan Plateau and its thermal effect on the plateau monsoon system (Dr.Zeyong HUGrant No.91537101)the China Meteorological Administration Special Fund for Scientific Research in the Public Interest (Grant No.GYHY201406001)the EU-FP7 project “CORECLIMAX” (Grant No.313085)
文摘Time series of MODIS land surface temperature(Ts) and normalized difference vegetation index(NDVI) products,combined with digital elevation model(DEM) and meteorological data from 2001 to 2012,were used to map the spatial distribution of monthly mean air temperature over the Northern Tibetan Plateau(NTP). A time series analysis and a regression analysis of monthly mean land surface temperature(Ts) and air temperature(Ta) were conducted using ordinary linear regression(OLR) and geographical weighted regression(GWR). The analyses showed that GWR,which considers MODIS Ts,NDVI and elevation as independent variables,yielded much better results [RAdj2> 0.79; root-mean-square error(RMSE) =0.51℃–1.12℃] associated with estimating Tacompared to those from OLR(RAdj2= 0.40-0.78; RMSE = 1.60℃–4.38℃).In addition,some characteristics of the spatial distribution of monthly Taand the difference between the surface and air temperature(Td) are as follows. According to the analysis of the 0℃ and 10℃ isothermals,Tavalues over the NTP at elevations of 4000–5000 m were greater than 10℃ in the summer(from May to October),and Tavalues at an elevation of3200 m dropped below 0℃ in the winter(from November to April). Taexhibited an increasing trend from northwest to southeast. Except in the southeastern area of the NTP,T d values in other areas were all larger than 0℃ in the winter.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA2006010101)the National Natural Science Foundation of China (41905012, 91837208 and 41661144043)+2 种基金the National Key Research and Development Program of China (2018YFC1505701)the Opening Fund of Key Laboratory for Land Surface Process and Climate Change in Cold and Arid Regions, the Chinese Academy of Sciences (LPCC2018002)the China Postdoctoral Science Foundation (2018M641489)
文摘Snow cover on the Tibetan Plateau(TP)is closely related to regional and continental biological and hydrological processes.The vast snow cover,special climatic conditions,and sparse vegetative cover over the TP facilitate the occurrence of blowing snow,leading to substantial heterogeneities in the snow cover and great promotion in the moisture supply from the land surface to the overlying atmospheric boundary layer.However,blowing-snow processes are significantly misrepresented or even neglected in current models,which causes considerable uncertainties of numerical model simulations and leads to erroneous estimates of snow-related processes in mountainous terrain.We present in this paper a brief review of our work in the past 5 years to serve as a basis for further development and improvement of the land-surface model.These studies can be divided into three parts:detection of the problems,development of the land-surface model,and application of the coupled model over the TP(the logical framework is presented in Figure 1).The origin and advances in the development of a land-surface model with consideration of blowing-snow effects are described herein;and the importance of blowing-snow processes in the land-surface model,especially over the TP,is highlighted.We expect that the blowingsnow studies over the TP will play a key role in documenting and understanding the land-surface processes(LSPs)and the cryospheric changes over the TP.
基金Supported by the National Natural Science Foundation of China(91537104,41375077,91537106,and 91537214)
文摘Soil is heterogeneous and has different thermal and hydraulic properties, causing varied behavior in heat and mois- ture transport. Therefore, soil has an important effect on lanatmosphere interactions. In this study, an improved soil parameterization scheme that considers gravel and organic matter in the soil was introduced into CLM4.5 (Com- munity Land Model). By using data from the Zoige and Madoi sites on the Tibetan Plateau, the ability of the model to simultaneously simulate the duration of freeze-thaw periods, soil temperature, soil moisture, and surface energy during freeze-thaw processes, was validated. The results indicated that: (1) the new parameterization performed bet- ter in simulating the duration of the frozen, thawing, unfrozen, and freezing periods; (2) with the new scheme, the soil thermal conductivity values were decreased; (3) the new parameterization improved soil temperature simulation and effectively decreased cold biases; (4) the new parameterization scheme effectively decreased the dry biases of soil li- quid water content during the freezing, completely frozen, and thawing periods, but increased the wet biases during the completely thawed period; and (5) the net radiation, latent heat flux, and soil surface heat flux of the Zoige and Madoi sites were much improved by the new organic matter and thermal conductivity parameterization.
基金Supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK1001)Science Funds from Beijing Meteorological Service(BMBKJ202003008)。
文摘We analyzed the spatiotemporal variations in surface air temperature and key climate change indicators over the Tibetan Plateau during a common valid period from 1979 to 2018 to evaluate the performance of different datasets on various timescales.We used observations from 22 in-situ observation sites,the CRA-40/Land(CRA)reanalysis dataset,the China Meteorological Forcing Dataset(CMFD),and the ERA-Interim(ERA)reanalysis dataset.The three datasets are spatially consistent with the in-situ observations,but slightly underestimate the annual mean surface air temperature.The daily mean surface air temperature estimated by the CRA,CMFD,and ERA datasets is closer to the in-situ observations after correction for elevation.The CMFD shows the best performance in simulating the annual mean surface air temperature over the Tibetan Plateau,followed by the CRA and ERA datasets with comparable performances.The CMFD is relatively accurate in simulating the daily mean surface air temperature over the Tibetan Plateau on an annual scale,whereas both the CRA and ERA datasets perform better in summer than in winter.The increasing trends in the annual mean surface air temperature over the Tibetan Plateau from 1979 to 2018 reflected by the CRA dataset and the CMFD are 0.5℃(10 yr)^(-1),similar to the in-situ observations,whereas the warming rate in the ERA dataset is only 0.3℃(10 yr)^(-1).The trends in the length of the growing season derived from the in-situ observations,the CRA,CMFD,and ERA datasets are 5.3,4.8,6.1,and 3.2 day(10 yr)^(-1),respectively.Our analyses suggest that both the CRA dataset and the CMFD perform better than the ERA dataset in modeling the changes in surface air temperature over the Tibetan Plateau.
基金supported by the National Basic Research Program of China(2012-CB956100)the National Natural Science Foundation of China(41190082, 41071123)the Knowledge Innovation Key Program of the Chinese Academy of Sciences(KZCX2-EW-113)
文摘In this study,67 surface sediment samples collected from Nam Co in central Tibet were analyzed for total carbon,total organic carbon and total nitrogen,and 51 of these samples were also analyzed for n-alkanes.The origin and spatial distribution of organic matter were then investigated using these proxies,and the control factors responsible for the spatial distribution patterns and paleolimnological significance were discussed.The results indicated that the origin of organic matter in surface sediment of Nam Co is consistent with the sources of n-alkanes,which were primarily submerged plants,followed by terrestrial plants,and then aquatic algae and bacteria.The organic matter in surface sediments of the lake showed typical spatial variability.Because of the great influence of underwater topography,river inputs and water quality,the spatial distribution of organic matter is enriched from the source to the deposit center.This spatial variability of organic matter in the lake indicates that the sediments in different areas have different sensitivities to environmental changes,which is important to reconstruction of paleoenvironments and paleoclimate using lake sediment cores.
文摘On the gradient observational data of the atmospheric surface layer from September 1997 to December 1998 collected by two sets of Automatic Weather Station (AWS) installed in Gaize and Shiquanhe on the western Tibetan Plateau, mean surface roughness lengths at the two stations above are determined to be 2.7 and 2.9 cm, respectively. The bulk transfer coefficients each day are computed by the profile-flux method, means of the bulk transfer coefficient for momentum (i.e. drag coefficient) in 1998 are 4.83×10-3 and 4.75×103 at the two stations. The surface fluxes of momentum, sensible heat and latent heat each day are further estimated by the bulk formulas, annual mean of these fluxes is 3.4×10-2 and 1.8×102N/m2, 73.1 and 67.2 W/m2, 15.4 and 2.9 W/m2, respectively. The diurnal and seasonal variations are obtained by a composite method and the relationships among the heat transfers between land and atmosphere, plateau monsoon and plateau rain season are also discussed.
基金supported by the Hundred Talent Plan Project(Grant No.2003401)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX1-SW-04)the National Natural Science Foundation of China(Grant No.40233035).
文摘The observational data of Beiluhe test of the Qinghai-Xizang railway in June 2002 are used as forcing field of the surface model to study the simulation performance in Qinghai-Xizang Plateau. The simulation result shows that the model (NCAR/LSM) can present the surface character tendency reasonably under observation forcing. In NCAR/LSM, the descriptions of the surface vegetation type in Qinghai-Xizang Plateau have much difference to what is actually happening. According to the actual characteristic of the surface, we define the grassland vegetation coverage rate is 0.6, and the vegetation canopy is 0.15 m, and the displacement height is 0.10 m. Compared the results with the old model's parameter in experiment, we find that the simulation air (2 m) temperature and the ground temperature are close to those of the observation, and the simulation temperature of peak value is better, and the simulation flux of the ground is sure to be improved too. So, if the surface and vegetation parameters are revised in LSM model, the simulation capability of the land surface process model can be improved effectively in Qinghai-Xizang Plateau.
基金National Natural Science Foundation of China,No.41030528 No.41001278
文摘Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.