Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity co...Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity comprehensive index(LUICI) for analyzing land use spatial-temporal characteristics at 1 km scale. Results show that: 1) from the perspective of spatial patterns of landforms at a macro scale, there is a significant difference in land use intensity between the north and the south of China′s coastal zone. Hotspots of changes mainly concentrated in metropolitan areas, estuaries and coastal wetlands; 2) elevation is an important factor that controlling land use spatial patterns at local scale. Land use intensity is much higher within areas below the elevation of 400 m and it decreased significantly as the elevation increasing; 3) there is a significant land-ocean gradient for land use intensity, which is low in island and near-shore areas, but high in the regions that 4–30 km far away the coastline because of much intensive human activities; however, in recent decades land use intensity had been promoted significantly in low near-shore area due to extensive sea reclamations; 4) significant differences of land use intensity were also found among provincial administrative units. A rising trend of land use intensity was found in provincial-level administrative units from 2000 to 2010. To sum up, elevation, land-ocean gradient, socio-economic status and policy are all influencing factors to the spatial patterns and temporal variations of land use intensity in China′s coastal zone.展开更多
Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carb...Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carbon emissions by Logarithmic Mean Divisia Index(LMDI) model. The main conclusions are as follows: 1) Total anthropogenic carbon emission of Nanjing increased from 1.22928 ×10^7 t in 2000 to 3.06939 × 10^7 t in 2009, in which the carbon emission of Inhabitation, mining & manufacturing land accounted for 93% of the total. 2) The average land use carbon emission intensity of Nanjing in 2009 was 46.63 t/ha, in which carbon emission intensity of Inhabitation, mining & manufacturing land was the highest(200.52 t/ha), which was much higher than that of other land use types. 3) The average carbon source intensity in Nanjing was 16 times of the average carbon sink intensity(2.83 t/ha) in 2009, indicating that Nanjing was confronted with serious carbon deficit and huge carbon cycle pressure. 4) Land use area per unit GDP was an inhibitory factor for the increase of carbon emissions, while the other factors were all contributing factors. 5) Carbon emission effect evaluation should be introduced into land use activities to formulate low-carbon land use strategies in regional development.展开更多
Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic ...Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.展开更多
Based on digital land use data from 1995 to 2000 and road data, the land use and landscape changes of Golmud, Qumaleb and Zhidoi are studied on a macro-scale. Land use and landscape changes in highway buffer zones and...Based on digital land use data from 1995 to 2000 and road data, the land use and landscape changes of Golmud, Qumaleb and Zhidoi are studied on a macro-scale. Land use and landscape changes in highway buffer zones and city expansion are special subjects. A new formula is used to define the exact degree of dynamic land use. To adequately define land use and landscape pattern changes, the buffer zones, illustrating the changes at different distances from the road, are recognized with ArcGIS 8.1 software. Prominent changes took place in land use and landscape patterns from 1995 to 2000, and the area of built-up land increased by 323.8%. The comprehensive degree of dynamic land use is 2.25, and the degree of dynamic land use of built-up land is the highest, followed by cultivated land. Woodland has the lowest value. The used degree index of land resources declined by 38.8 from 1995 to 2000. Landscape changed dramatically which influenced ecological processes immensely. Different from the corridor effect of other traffic routes, the corridor effect of this section of road is not obvious and its “point” radiation effect can be easily seen. The expanding range of Golmud City is confined to a 3 km buffer, while for Wudaoliang, it is 1 km. No land use change happened in the Nanshankou buffer.展开更多
The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natur...The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natural resources,particularly water resources,have triggered a series of ecological and environmental problems,such as the reduction in the volume of water in the main river,deterioration of water quality,drying up of downstream rivers,degradation of vegetation,and land desertification.In this study,the land use/land cover change(LUCC)responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI(Environment for Visualizing Images)and GIS(Geographic Information System)data analysis software for the period of 1990-2018.Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used.The results indicate that LUCC covered an area of 2644.34 km^(2) during this period,accounting for 15.79%of the total study area.From 1990 to 2018,wetland,farmland,forestland,and artificial surfaces increased by 533.42 km^(2)(216.77%),446.68 km^(2)(123.66%),284.55 km^(2)(5.67%),and 57.51 km^(2)(217.96%),respectively,whereas areas covered by grassland and other land use/land cover types,such as Gobi,bare soil,and deserts,decreased by 103.34 km2(14.31%)and 1218.83 km2(11.75%),respectively.Vegetation area decreased first and then increased,with the order of 2010<2000<1990<2018.LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation,irregularity,and complexity.By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018,we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River.This study provides scientific guidance for optimal scheduling of water resources in the region.展开更多
Urban space expansion is the result of the interaction between internal and external forces of the urban. Based on the remote sensing image data of 1990, 2000, 2010, and 2020, and the social and economic development d...Urban space expansion is the result of the interaction between internal and external forces of the urban. Based on the remote sensing image data of 1990, 2000, 2010, and 2020, and the social and economic development data, this paper analyzes the driving mechanism of the Luoyang space expansion characteristics and its correlation characteristics. By using urban land use efficiency index, urban expansion elastic index;urban allometric growth index, and grey correlation analysis in 4 times sections and 3 periods. The research results show that the urban space expansion of Luoyang mainly comes from the needs and support of economic development, the coordination between urban space expansion and population development is poor, and urban space expansion effectively attracts the inflow of external funds, and the settlement of migrants, drives the development of the tertiary industry, and increases the local revenue.展开更多
Bush encroachment is widely distributed in arid and semi-arid regions, and it has a serious impact on livestock production, especially in Africa where livestock is a primary source for the livelihoods of many people. ...Bush encroachment is widely distributed in arid and semi-arid regions, and it has a serious impact on livestock production, especially in Africa where livestock is a primary source for the livelihoods of many people. In this study, methods of supervised classification and decision tree classification, and indexes of a land use change significance index(Ci) and a single land use dynamic degree, were applied to remote sensing imagery of Ethiopia for 1986–2016. The results show the dynamic characteristics of grassland bush encroachment in low altitude areas(pastures 1500 m above sea level) of Ethiopia in the 30 year period studied. The results revealed several interesting features of this phenomenon.(1) The area of bush encroachment showed an increasing trend, with a maximum of 3.74×10^3 km^2 in 2003, which represented 68.97% of the total area, and declined slightly from 2003~2016.(2) Among classification types, the area of severe shrub grassland was the largest, accounting for 28.36–49.10% of the total area, while the area of moderate bush encroachment accounted for 9.77–16.68%, and slight bush encroachment accounted for 5.52–7.57%.(3) The expansion rate of shrubby grassland was 0.74% for the 30 year period, while the average annual expansion rate was 2.16% for the 8 years from 1995–2003.(4) Forest land and grassland were the two main land use types of shrub grassland transformation in low altitude areas and bush encroachment changed large amounts of forest land into grassland due to shrub grassland management. The results of this study provide basic data for revealing the impacts of development processes on subsequent bush encroachment and can inform better management for the sustainable development of grasslands in low altitude systems.展开更多
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05130703)Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-224)2020-Planning Project of Yantai Institute of Coastal Zone Research of Chinese Academy of Sciences(No.Y254021031-6)
文摘Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity comprehensive index(LUICI) for analyzing land use spatial-temporal characteristics at 1 km scale. Results show that: 1) from the perspective of spatial patterns of landforms at a macro scale, there is a significant difference in land use intensity between the north and the south of China′s coastal zone. Hotspots of changes mainly concentrated in metropolitan areas, estuaries and coastal wetlands; 2) elevation is an important factor that controlling land use spatial patterns at local scale. Land use intensity is much higher within areas below the elevation of 400 m and it decreased significantly as the elevation increasing; 3) there is a significant land-ocean gradient for land use intensity, which is low in island and near-shore areas, but high in the regions that 4–30 km far away the coastline because of much intensive human activities; however, in recent decades land use intensity had been promoted significantly in low near-shore area due to extensive sea reclamations; 4) significant differences of land use intensity were also found among provincial administrative units. A rising trend of land use intensity was found in provincial-level administrative units from 2000 to 2010. To sum up, elevation, land-ocean gradient, socio-economic status and policy are all influencing factors to the spatial patterns and temporal variations of land use intensity in China′s coastal zone.
基金Under the auspices of National Natural Science Foundation of China(No.41301633)National Social Science Foundation of China(No.10ZD&030)+1 种基金Postdoctoral Science Foundation of China(No.2012M511243,2013T60518)Clean Development Mechanism Foundation of China(No.1214073,2012065)
文摘Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carbon emissions by Logarithmic Mean Divisia Index(LMDI) model. The main conclusions are as follows: 1) Total anthropogenic carbon emission of Nanjing increased from 1.22928 ×10^7 t in 2000 to 3.06939 × 10^7 t in 2009, in which the carbon emission of Inhabitation, mining & manufacturing land accounted for 93% of the total. 2) The average land use carbon emission intensity of Nanjing in 2009 was 46.63 t/ha, in which carbon emission intensity of Inhabitation, mining & manufacturing land was the highest(200.52 t/ha), which was much higher than that of other land use types. 3) The average carbon source intensity in Nanjing was 16 times of the average carbon sink intensity(2.83 t/ha) in 2009, indicating that Nanjing was confronted with serious carbon deficit and huge carbon cycle pressure. 4) Land use area per unit GDP was an inhibitory factor for the increase of carbon emissions, while the other factors were all contributing factors. 5) Carbon emission effect evaluation should be introduced into land use activities to formulate low-carbon land use strategies in regional development.
基金Supported by projects of the National Key Research and Developm ent China(No.2016YFC0501201-04)Strategic Planning of Ins titute of Northeast Geography and Agroecology,CAS(No.Y6H2091001).
文摘Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.
基金The National Key Basic Research Special Fund, No.Gl 998040800 The Core Project of Institute of Geographic Sciences and Natural Resources Research of CAS for Knowledge Innovation, No. CXIOG-E01-01,No.CXIOG-A00-03-02.
文摘Based on digital land use data from 1995 to 2000 and road data, the land use and landscape changes of Golmud, Qumaleb and Zhidoi are studied on a macro-scale. Land use and landscape changes in highway buffer zones and city expansion are special subjects. A new formula is used to define the exact degree of dynamic land use. To adequately define land use and landscape pattern changes, the buffer zones, illustrating the changes at different distances from the road, are recognized with ArcGIS 8.1 software. Prominent changes took place in land use and landscape patterns from 1995 to 2000, and the area of built-up land increased by 323.8%. The comprehensive degree of dynamic land use is 2.25, and the degree of dynamic land use of built-up land is the highest, followed by cultivated land. Woodland has the lowest value. The used degree index of land resources declined by 38.8 from 1995 to 2000. Landscape changed dramatically which influenced ecological processes immensely. Different from the corridor effect of other traffic routes, the corridor effect of this section of road is not obvious and its “point” radiation effect can be easily seen. The expanding range of Golmud City is confined to a 3 km buffer, while for Wudaoliang, it is 1 km. No land use change happened in the Nanshankou buffer.
基金This study was supported by the Key Project of National Natural Science Foundation of China-Xinjiang Joint Fund(U1803241)the Key Project of Xinjiang Uygur Autonomous Region Talent Special Plan-Tianshan Outstanding Youth(2019Q033)+1 种基金the West Light Foundation of the Chinese Academy of Sciences(2017-XBQNXZ-B-019)the Science and Technology Plan Major Projects of the Xinjiang Uygur Autonomous Region,China(2021A03001-3).
文摘The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natural resources,particularly water resources,have triggered a series of ecological and environmental problems,such as the reduction in the volume of water in the main river,deterioration of water quality,drying up of downstream rivers,degradation of vegetation,and land desertification.In this study,the land use/land cover change(LUCC)responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI(Environment for Visualizing Images)and GIS(Geographic Information System)data analysis software for the period of 1990-2018.Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used.The results indicate that LUCC covered an area of 2644.34 km^(2) during this period,accounting for 15.79%of the total study area.From 1990 to 2018,wetland,farmland,forestland,and artificial surfaces increased by 533.42 km^(2)(216.77%),446.68 km^(2)(123.66%),284.55 km^(2)(5.67%),and 57.51 km^(2)(217.96%),respectively,whereas areas covered by grassland and other land use/land cover types,such as Gobi,bare soil,and deserts,decreased by 103.34 km2(14.31%)and 1218.83 km2(11.75%),respectively.Vegetation area decreased first and then increased,with the order of 2010<2000<1990<2018.LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation,irregularity,and complexity.By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018,we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River.This study provides scientific guidance for optimal scheduling of water resources in the region.
文摘Urban space expansion is the result of the interaction between internal and external forces of the urban. Based on the remote sensing image data of 1990, 2000, 2010, and 2020, and the social and economic development data, this paper analyzes the driving mechanism of the Luoyang space expansion characteristics and its correlation characteristics. By using urban land use efficiency index, urban expansion elastic index;urban allometric growth index, and grey correlation analysis in 4 times sections and 3 periods. The research results show that the urban space expansion of Luoyang mainly comes from the needs and support of economic development, the coordination between urban space expansion and population development is poor, and urban space expansion effectively attracts the inflow of external funds, and the settlement of migrants, drives the development of the tertiary industry, and increases the local revenue.
基金China–Africa Joint Research Centre Project of the Chinese Academy of Sciences(SAJC201610)Science and Technology partnership ProgramMinistry of Science and Technology of China(KY201702010)
文摘Bush encroachment is widely distributed in arid and semi-arid regions, and it has a serious impact on livestock production, especially in Africa where livestock is a primary source for the livelihoods of many people. In this study, methods of supervised classification and decision tree classification, and indexes of a land use change significance index(Ci) and a single land use dynamic degree, were applied to remote sensing imagery of Ethiopia for 1986–2016. The results show the dynamic characteristics of grassland bush encroachment in low altitude areas(pastures 1500 m above sea level) of Ethiopia in the 30 year period studied. The results revealed several interesting features of this phenomenon.(1) The area of bush encroachment showed an increasing trend, with a maximum of 3.74×10^3 km^2 in 2003, which represented 68.97% of the total area, and declined slightly from 2003~2016.(2) Among classification types, the area of severe shrub grassland was the largest, accounting for 28.36–49.10% of the total area, while the area of moderate bush encroachment accounted for 9.77–16.68%, and slight bush encroachment accounted for 5.52–7.57%.(3) The expansion rate of shrubby grassland was 0.74% for the 30 year period, while the average annual expansion rate was 2.16% for the 8 years from 1995–2003.(4) Forest land and grassland were the two main land use types of shrub grassland transformation in low altitude areas and bush encroachment changed large amounts of forest land into grassland due to shrub grassland management. The results of this study provide basic data for revealing the impacts of development processes on subsequent bush encroachment and can inform better management for the sustainable development of grasslands in low altitude systems.