This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different...This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.展开更多
Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently th...Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently the climate. Based on the data from 127 soil sample sites, 48 vegetation survey plots, and Landsat TM images, we analyzed the land use/cover changes, estimated soil organic carbon(SOC) storage and vegetation carbon storage of grassland, and discussed the impact of grassland changes on carbon storage during 2000 to 2013 in the Ili River Valley of Northwest China. The results indicate that the areal extents of forestland, shrubland, moderate-coverage grassland(MCG), and the waterbody(including glaciers) decreased while the areal extents of high-coverage grassland(HCG),low-coverage grassland(LCG), residential and industrial land, and cultivated land increased. The grassland SOC density in 0–100 cm depth varied with the coverage in a descending order of HCG〉MCG〉LCG.The regional grassland SOC storage in the depth of 0–100 cm in 2013 increased by 0.25×1011 kg compared with that in 2000. The regional vegetation carbon storage(S_(rvc)) of grassland was 5.27×10~9 kg in2013 and decreased by 15.7% compared to that in 2000. The vegetation carbon reserves of the under-ground parts of vegetation(S_(ruvb)) in 2013 was 0.68×10~9 kg and increased by approximately 19.01%compared to that in 2000. This research can improve our understanding about the impact of land use/cover changes on the carbon storage in arid areas of Northwest China.展开更多
Spatial distributions of 0-20 cm soil carbon sources/sinks caused by land use changes from the year 1980 to 2000 in an area of 2.97 ~ 106 km2 in eastern China were investigated using a land use dataset from a recent s...Spatial distributions of 0-20 cm soil carbon sources/sinks caused by land use changes from the year 1980 to 2000 in an area of 2.97 ~ 106 km2 in eastern China were investigated using a land use dataset from a recent soil geochemical survey. A map of soil carbon sourcesJsinks has been prepared based on a spatial analysis scheme with GIg. Spatial statistics showed that land use changes had caused 30.7 + 13.64 Tg of surface soil organic carbon loss, which accounts for 0.33% of the total carbon storage of 9.22 Pg. The net effect of the carbon source was estimated to be ~ 71.49 Tg soil carbon decrease and ~ 40.80 Tg increase. Land use changes in Northeast China (NE) have the largest impact on soil organic carbon storage compared with other regions. Paddy fields, which were mainly transformed into dry farmland in NE, and constructed land in other regions, were the largest carbon sources among the land use types. Swamp land in NE was also another large soil carbon source when it was transformed into dry farmland or paddy fields. Dry farmland in the NE region formed the largest soil organic carbon sink, as some were trans- formed into paddy fields, forested land, and other land use types with high SOCD.展开更多
Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mech...Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mechanical and physical properties such as shear strength, compressibility, shrinkage and swelling potentials. Although, several studies have been conducted regarding the land use effects on various soil mechanical properties, little is known about the effects of land use and slope positions on Atterberg limits and consistency indices. This study was conducted to investigate the effects of land use and slope position on selected soil physical and chemical properties, Atterberg limits and consistency indices in hilly region of western Iran. Three land uses including dryland farming, irrigated farming and pasture and four slope positions(i.e., shoulder, backslope, footslope, and toeslope) were used for soil samplings. One hundred eleven soil samples were collected from the surface soil(0-10 cm). Selected physical and chemical properties, liquid limit(LL), plastic limit(PL) and shrinkage limit(SL) were measured using the standard methods; and consistency indices including plastic index(PI), friability index(FI), shrinkage index(SI) and soil activity(A=PI/clay) were calculated. The results showed that irrigated farming significantly increased organic matter content(OM) and OM/clay ratio, and decreased bulk density(ρb) and relative bulk density(ρb-rel) as a result of higher biomass production and plant residues added to the soil compared to other land uses. Except for sand content, OM, ρb, cation exchange capacity(CEC) and calcium carbonate equivalent(CCE), slope position significantly affected soil physical and chemical properties. The highest values of silt, OM/clay and CEC/clay were found in the toeslope position, predominantly induced by soil redistribution within the landscape. The use of complexed(COC)- noncomplexed organic carbon(NCOC) concept indicated that majority of the studied soils were located below the saturation line and the OM in the soils was mainly in the COC form. The LL, PI, FI and A showed significant differences among the land uses; the highest values belonged to the irrigated farming due to high biomass production and plant residues returned to the soils. Furthermore, slope position significantly affected the Atterberg limits and consistency indices except for SL. The highest values of LL, PI, SI and A were observed in the toeslope position probably because of higher OM and CEC/clay due to greater amount of expandable phyllosilicate clays. Overall, soils on the toeslope under irrigated farming with high LL and SI and low values of FI need careful tillage management to avoid soil compaction.展开更多
Soil carbon(C) and nitrogen(N) play a crucial role in determining the soil and environmental quality. In this study, we investigated the effects of 26 years(from 1984 to 2010) of farmland management on soil orga...Soil carbon(C) and nitrogen(N) play a crucial role in determining the soil and environmental quality. In this study, we investigated the effects of 26 years(from 1984 to 2010) of farmland management on soil organic carbon(SOC) and soil N in abandoned, wheat(Triticum aestivum L.) non-fertilized, wheat fertilized(mineral fertilizer and organic manure) and alfalfa(Medicago Sativa L.) non-fertilized treatments in a semi-arid region of the Loess Plateau, China. Our results showed that SOC and soil total N contents in the 0–20 cm soil layer increased by 4.29(24.4%) and 1.39 Mg/hm2(100%), respectively, after the conversion of farmland to alfalfa land. Compared to the wheat non-fertilized treatment, SOC and soil total N contents in the 0–20 cm soil layer increased by 4.64(26.4%) and 1.18 Mg/hm2(85.5%), respectively, in the wheat fertilized treatment. In addition, we found that the extents of changes in SOC, soil total N and mineral N depended on soil depth were greater in the upper soil layer(0–30 cm) than in the deeper soil layer(30–100 cm) in the alfalfa land or fertilizer-applied wheat land. Fertilizer applied to winter wheat could increase the accumulation rates of SOC and soil total N. SOC concentration had a significant positive correlation with soil total N concentration. Therefore, this study suggested that farmland management, e.g. the conversion of farmland to alfalfa forage land and fertilizer application, could promote the sequestrations of C and N in soils in semi-arid regions.展开更多
Dissolved organic matter (DOM) is closely linked to human activities in drainage basins and plays a crucial role in maintaining ecosystem functioning and reflecting environmental quality. However, the impacts of clima...Dissolved organic matter (DOM) is closely linked to human activities in drainage basins and plays a crucial role in maintaining ecosystem functioning and reflecting environmental quality. However, the impacts of climate and anthropogenic-induced changes on DOM in riverine systems under increasingly warming conditions still need to be better understood, particularly at large regional scales. To address this knowledge gap, we analyzed a dataset containing 386 published measurements for nine major Chinese river systems, examining dissolved organic carbon (DOC) concentrations and optical properties of chromophoric DOM (CDOM) under diverse envi- ronmental conditions, including mean air temperature, precipitation, surface solar radiation, population density, and land use. Our findings indicate that riverine DOC concentrations are significantly higher in northern China (at ∼46.8%) than in the south. This disparity is primarily due to the high input of soil erosion-induced DOM from drying-affected lands (57.0%), farmland (49.1%), and forests in the north. The high temperate and strong hydrological conditions would lead to DOM degradation easily in the riverine system in the south of China. Our study highlights that various climatic and anthropogenic factors, such as agriculture, vegetation coverage, soil erosion, surface solar radiation, and precipitation, individually or in combination, can affect DOM dynamics in river systems. Therefore, considering alterations in DOM dynamics resulting from climate and environmental changes is crucial for carbon-neutral policies and sustainable river ecosystem assessments.展开更多
文摘This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.
基金financially supported by the National Science and Technology Support Plan (2014BAC15B03)the National Natural Science Foundation of China (41371503, 41371128)the West Light Foundation of the Chinese Academy of Sciences (YB201302)
文摘Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently the climate. Based on the data from 127 soil sample sites, 48 vegetation survey plots, and Landsat TM images, we analyzed the land use/cover changes, estimated soil organic carbon(SOC) storage and vegetation carbon storage of grassland, and discussed the impact of grassland changes on carbon storage during 2000 to 2013 in the Ili River Valley of Northwest China. The results indicate that the areal extents of forestland, shrubland, moderate-coverage grassland(MCG), and the waterbody(including glaciers) decreased while the areal extents of high-coverage grassland(HCG),low-coverage grassland(LCG), residential and industrial land, and cultivated land increased. The grassland SOC density in 0–100 cm depth varied with the coverage in a descending order of HCG〉MCG〉LCG.The regional grassland SOC storage in the depth of 0–100 cm in 2013 increased by 0.25×1011 kg compared with that in 2000. The regional vegetation carbon storage(S_(rvc)) of grassland was 5.27×10~9 kg in2013 and decreased by 15.7% compared to that in 2000. The vegetation carbon reserves of the under-ground parts of vegetation(S_(ruvb)) in 2013 was 0.68×10~9 kg and increased by approximately 19.01%compared to that in 2000. This research can improve our understanding about the impact of land use/cover changes on the carbon storage in arid areas of Northwest China.
基金financially supported by the Geological Survey Project of CGS(12120113000400 and DD20160323)the Fundamental Research Funds for the Central Universities (2652015055)
文摘Spatial distributions of 0-20 cm soil carbon sources/sinks caused by land use changes from the year 1980 to 2000 in an area of 2.97 ~ 106 km2 in eastern China were investigated using a land use dataset from a recent soil geochemical survey. A map of soil carbon sourcesJsinks has been prepared based on a spatial analysis scheme with GIg. Spatial statistics showed that land use changes had caused 30.7 + 13.64 Tg of surface soil organic carbon loss, which accounts for 0.33% of the total carbon storage of 9.22 Pg. The net effect of the carbon source was estimated to be ~ 71.49 Tg soil carbon decrease and ~ 40.80 Tg increase. Land use changes in Northeast China (NE) have the largest impact on soil organic carbon storage compared with other regions. Paddy fields, which were mainly transformed into dry farmland in NE, and constructed land in other regions, were the largest carbon sources among the land use types. Swamp land in NE was also another large soil carbon source when it was transformed into dry farmland or paddy fields. Dry farmland in the NE region formed the largest soil organic carbon sink, as some were trans- formed into paddy fields, forested land, and other land use types with high SOCD.
基金Isfahan University of Technology for the financial support of this study
文摘Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mechanical and physical properties such as shear strength, compressibility, shrinkage and swelling potentials. Although, several studies have been conducted regarding the land use effects on various soil mechanical properties, little is known about the effects of land use and slope positions on Atterberg limits and consistency indices. This study was conducted to investigate the effects of land use and slope position on selected soil physical and chemical properties, Atterberg limits and consistency indices in hilly region of western Iran. Three land uses including dryland farming, irrigated farming and pasture and four slope positions(i.e., shoulder, backslope, footslope, and toeslope) were used for soil samplings. One hundred eleven soil samples were collected from the surface soil(0-10 cm). Selected physical and chemical properties, liquid limit(LL), plastic limit(PL) and shrinkage limit(SL) were measured using the standard methods; and consistency indices including plastic index(PI), friability index(FI), shrinkage index(SI) and soil activity(A=PI/clay) were calculated. The results showed that irrigated farming significantly increased organic matter content(OM) and OM/clay ratio, and decreased bulk density(ρb) and relative bulk density(ρb-rel) as a result of higher biomass production and plant residues added to the soil compared to other land uses. Except for sand content, OM, ρb, cation exchange capacity(CEC) and calcium carbonate equivalent(CCE), slope position significantly affected soil physical and chemical properties. The highest values of silt, OM/clay and CEC/clay were found in the toeslope position, predominantly induced by soil redistribution within the landscape. The use of complexed(COC)- noncomplexed organic carbon(NCOC) concept indicated that majority of the studied soils were located below the saturation line and the OM in the soils was mainly in the COC form. The LL, PI, FI and A showed significant differences among the land uses; the highest values belonged to the irrigated farming due to high biomass production and plant residues returned to the soils. Furthermore, slope position significantly affected the Atterberg limits and consistency indices except for SL. The highest values of LL, PI, SI and A were observed in the toeslope position probably because of higher OM and CEC/clay due to greater amount of expandable phyllosilicate clays. Overall, soils on the toeslope under irrigated farming with high LL and SI and low values of FI need careful tillage management to avoid soil compaction.
基金funded by the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (131025)the Natural Science Foundation of Shaanxi Province (2014KJXX-52)
文摘Soil carbon(C) and nitrogen(N) play a crucial role in determining the soil and environmental quality. In this study, we investigated the effects of 26 years(from 1984 to 2010) of farmland management on soil organic carbon(SOC) and soil N in abandoned, wheat(Triticum aestivum L.) non-fertilized, wheat fertilized(mineral fertilizer and organic manure) and alfalfa(Medicago Sativa L.) non-fertilized treatments in a semi-arid region of the Loess Plateau, China. Our results showed that SOC and soil total N contents in the 0–20 cm soil layer increased by 4.29(24.4%) and 1.39 Mg/hm2(100%), respectively, after the conversion of farmland to alfalfa land. Compared to the wheat non-fertilized treatment, SOC and soil total N contents in the 0–20 cm soil layer increased by 4.64(26.4%) and 1.18 Mg/hm2(85.5%), respectively, in the wheat fertilized treatment. In addition, we found that the extents of changes in SOC, soil total N and mineral N depended on soil depth were greater in the upper soil layer(0–30 cm) than in the deeper soil layer(30–100 cm) in the alfalfa land or fertilizer-applied wheat land. Fertilizer applied to winter wheat could increase the accumulation rates of SOC and soil total N. SOC concentration had a significant positive correlation with soil total N concentration. Therefore, this study suggested that farmland management, e.g. the conversion of farmland to alfalfa forage land and fertilizer application, could promote the sequestrations of C and N in soils in semi-arid regions.
基金the National Natural Science Foun-dation of China(Grants No.41925002,42221001,42230509)received financial support from the Haihe Laboratory of Sustainable Chemical Transformations.
文摘Dissolved organic matter (DOM) is closely linked to human activities in drainage basins and plays a crucial role in maintaining ecosystem functioning and reflecting environmental quality. However, the impacts of climate and anthropogenic-induced changes on DOM in riverine systems under increasingly warming conditions still need to be better understood, particularly at large regional scales. To address this knowledge gap, we analyzed a dataset containing 386 published measurements for nine major Chinese river systems, examining dissolved organic carbon (DOC) concentrations and optical properties of chromophoric DOM (CDOM) under diverse envi- ronmental conditions, including mean air temperature, precipitation, surface solar radiation, population density, and land use. Our findings indicate that riverine DOC concentrations are significantly higher in northern China (at ∼46.8%) than in the south. This disparity is primarily due to the high input of soil erosion-induced DOM from drying-affected lands (57.0%), farmland (49.1%), and forests in the north. The high temperate and strong hydrological conditions would lead to DOM degradation easily in the riverine system in the south of China. Our study highlights that various climatic and anthropogenic factors, such as agriculture, vegetation coverage, soil erosion, surface solar radiation, and precipitation, individually or in combination, can affect DOM dynamics in river systems. Therefore, considering alterations in DOM dynamics resulting from climate and environmental changes is crucial for carbon-neutral policies and sustainable river ecosystem assessments.