Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ...Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.展开更多
The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial an...The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.展开更多
The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holisti...The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.展开更多
Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeh...Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeholders.This study introduced economic standards for farmers.A hybrid approach(CA-ABM)of cellular automaton(CA)and an agent-based model(ABM)was developed to effectively deal with social and land-use synergic issues to examine human–environment interactions and projections of land-use conversions for a humid basin in south China.Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change.The major modules of the CA-ABM are initialization,migration,assets,land suitability,and land-use change decisions.Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression(SLR)model.Simultaneously,multicriteria evaluation(MCE)and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion.An agent-based CA-SLR-MCE-Markov(ABCSMM)land-use conversion model was proposed to explore the impacts of policies on land-use conversion.This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services.The results demonstrated land-use simulations under multi-policy scenarios,revealing the usefulness of the model for normative research on land-use management.展开更多
Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and...Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB.展开更多
Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality ...Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.展开更多
Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land ...Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities.展开更多
With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to th...With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.展开更多
The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the regio...The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.展开更多
The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are e...The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.展开更多
Local populations in Cameroon thrive on forest resources and the flow of ecosystem services they provide are pivotal in sustaining national economy, improving people’s lives, safeguarding biodiversity, and mitigating...Local populations in Cameroon thrive on forest resources and the flow of ecosystem services they provide are pivotal in sustaining national economy, improving people’s lives, safeguarding biodiversity, and mitigating the impacts of environmental changes. The exploitation of these resources invariably leads to deforestation and forest degradation. This study was designed to evaluate land use land cover change (LULCC) in the Eseka alluvial gold mining district with the aid of Landsat images. In the investigation of forest cover change, four Landsat satellite images for (1990, 2002, 2015 and 2022) were used. Ground-truthing also helped to identify the activities carried out by the local population and to determine agents, drivers and pressures of land use and land cover change. Four main land cover classes namely: forest, agricultural land, settlement/mining camps and water bodies were selected. Between 1990 and 2022, the proportion of forest decreased from 98% to 34% while those of agricultural land and settlement/mining camps increased from 2% to 60% and 0.54% to 6% respectively. Analysis showed ongoing deforestation with forest cover loss of ~98,263 ha in 32 years giving a cover change percentage of 63.94%. Kappa coefficient for the study period ranged from 0.92 to 0.99. Forest cover loss could be attributed to farming activities, wood extraction and alluvial gold mining activities. Economic motives notably the need to increase household income from a frequent demand for farm and wood products in neighbouring towns and the quest for gold were the main drivers of these activities. Hence, this study assesses the impact of human activities from the mining sector on the forest ecosystem in a bid to inform mitigation policies.展开更多
Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Prov...Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.展开更多
Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce...Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce the changes. The study aims to evaluate and quantify the historical changes in land use and land cover in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, from 2002 to 2022. The objective of the study was to analyse the LULC changes in Ward 2 (Mukumbura), Mt Darwin, Northern Zimbabwe, for a period of 20 years using geospatial techniques. Landsat satellite images were processed using Google Earth Engine (GEE) and the supervised classification with maximum likelihood algorithm was employed to generate LULC maps between 2002 and 2022 with a five (5) year interval, investigating the following variables, forest cover, barren land, water cover and the fields. Findings revealed a substantial reduction in forest cover by 38.8%, water bodies (wetlands, ponds, and rivers) declined by 55.6%, whilst fields (crop/agricultural fields) increased by 93.3% and the barren land cover increased by 26.3% from 2002 to 2022. These findings point to substantial changes in LULC over the observed years. LULC changes have resulted in habitat fragmentation, reduced biodiversity, and the disruption of ecosystem functions. The study concludes that if these deforestation trends, cultivation, and settlement land expansion continue, the ward will have limited indigenous fruit trees. Therefore, the causes for LULC changes must be controlled, sustainable forest resources use practiced, hence the need to domesticate the indigenous fruit trees in arborloo toilets.展开更多
The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the la...The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.展开更多
Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case stu...Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case study area, this paper analyzed the long-term land use land cover change from 2002 to 2022. Satellite images were processed by using Google Earth Engine (GEE). Therefore, four major land cover classes were identified based on spectral characteristics of Land sat, namely, built-up, vegetation, cropland, bare land and water. The result revealed that barren and built-up areas increased at the expense of vegetation and water. From the four major land use land cover the large area is covered by vegetation which comprises about 192963.5 hectares followed by cropland and water consisting of 32506.43 and 1596.4 hectares respectively. The built-up area gained substantial area (most) during the study period. The reduction in some of the land cover/uses underlines the dangerous trend of the pressure poised by population growth and the changing functionality. Land cover change is influenced by a variety of societal factors operating on several spatial and temporal levels. The area estimates and spatial distributions of the LULC classes produced from the current study will assist local authorities, managers, and other stakeholders in decision-making and planning regarding forest land cover and uses.展开更多
Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise ...Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.展开更多
This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques...This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques. Landsat images are used to estimate the LULC changes and the MODIS data for LST.The Maximum Likelihood Classification(MLC) method is used, and the LULC is classified into six categories: Agriculture Land, Barren Land, Salt Pan, Sandy Beach, Settlement, and Waterbody. Within the two decades of the present change detection study, upheave in the Settlement area of 49.89% is noticed, and the Agriculture Land is exploited by 20.09%. Salt Pan emits a high LST of 31.57°C, and the Waterbodies are noticed with a low LST of 28.9°C. However, the overall rate of LST decreased by 0.56°C during this period. This study will help policymakers make appropriate planning and management to overcome the impact of LULC and LST in the forthcoming years.展开更多
Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Lan...Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.展开更多
The availability of better economic possibilities and well-connected transportation networks has attracted people to migrate to peri-urban and rural neighbourhoods,changing the landscape of regions outside the city an...The availability of better economic possibilities and well-connected transportation networks has attracted people to migrate to peri-urban and rural neighbourhoods,changing the landscape of regions outside the city and fostering the growth of physical infrastructure.Using multi-temporal satellite images,the dynamics of Land Use/Land Cover(LULC)changes,the impact of urban growth on LULC changes,and regional environmental implications were investigated in the peri-urban and rural neighbourhoods of Durgapur Municipal Corporation in India.The study used different case studies to highlight the study area’s heterogeneity,as the phenomenon of change is not consistent.Landsat TM and OLI-TIRS satellite images in 1991,2001,2011,and 2021 were used to analyse the changes in LULC types.We used the relative deviation(RD),annual change intensity(ACI),uniform intensity(UI)to show the dynamicity of LULC types(agriculture land;built-up land;fallow land;vegetated land;mining area;and water bodies)during 1991-2021.This study also applied the Decision-Making Trial and Evaluation Laboratory(DEMATEL)to measure environmental sensitivity zones and find out the causes of LULC changes.According to LULC statistics,agriculture land,built-up land,and mining area increased by 51.7,95.46,and 24.79 km^(2),respectively,from 1991 to 2021.The results also suggested that built-up land and mining area had the greatest land surface temperature(LST),whereas water bodies and vegetated land showed the lowest LST.Moreover,this study looked at the relationships among LST,spectral indices(Normalized Differenced Built-up Index(NDBI),Normalized Difference Vegetation Index(NDVI),and Normalized Difference Water Index(NDWI)),and environmental sensitivity.The results showed that all of the spectral indices have the strongest association with LST,indicating that built-up land had a far stronger influence on the LST.The spectral indices indicated that the decreasing trends of vegetated land and water bodies were 4.26 and 0.43 km^(2)/a,respectively,during 1991-2021.In summary,this study can help the policy-makers to predict the increasing rate of temperature and the causes for the temperature increase with the rapid expansion of built-up land,thus making effective peri-urban planning decisions.展开更多
This research studied the spatiotemporal changes in land use(LU)/land cover(LC)in Dambatta local government area,with a view to identifying the effect arising from the observable changes in land use patterns.The image...This research studied the spatiotemporal changes in land use(LU)/land cover(LC)in Dambatta local government area,with a view to identifying the effect arising from the observable changes in land use patterns.The imageries used in the study were obtained from the National Space Research and Development Agency(NARSDA),Abuja.Spatial analytical techniques and descriptive statistical techniques were employed to analyze the data.The results showed 66.8%reduction in agricultural lands,45.5%reduction in vegetation cover,223.2%increase in built-up areas,269.1%increase in bare lands and 70%increase in water bodies within the 20 years.Spatio-temporal analysis of the three imageries revealed that agricultural lands were largely been taken over by urbanization while vegetation had rapidly given way to bare lands within the 20 years.It was observed that these changes resulted from anthropogenic activities,environmental factors and climate change.These result in the loss of farmlands,inadequate food supply,unemployment,inadequate industrial raw materials,reduction in revenue generated,forest depletion,desertification,wildlife extinction and temperature increase.While it is recommended that reforestation,land reclamation and irrigation agriculture should be promoted in the area,it is also suggested that further research should focus on the impact of climate change on land cover change in the area.展开更多
基金supported by the Central Government to Guide Local Technological Development(23ZYQH0298)the Science and Technology Project of Gansu Province(20JR10RA656,22JR5RA416)the Science and Technology Project of Wuwei City(WW2202YFS006).
文摘Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.
文摘The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.
基金supported by the Third Xinjiang Scientific Expedition Program (2022xjkk1100)the Tianchi Talent Project
文摘The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.
基金supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2021ZT090543)the National Natural Science Foundation of China(U20A20117)the Key-Area Research and Development Program of Guangdong Province(2020B1111380003).
文摘Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeholders.This study introduced economic standards for farmers.A hybrid approach(CA-ABM)of cellular automaton(CA)and an agent-based model(ABM)was developed to effectively deal with social and land-use synergic issues to examine human–environment interactions and projections of land-use conversions for a humid basin in south China.Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change.The major modules of the CA-ABM are initialization,migration,assets,land suitability,and land-use change decisions.Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression(SLR)model.Simultaneously,multicriteria evaluation(MCE)and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion.An agent-based CA-SLR-MCE-Markov(ABCSMM)land-use conversion model was proposed to explore the impacts of policies on land-use conversion.This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services.The results demonstrated land-use simulations under multi-policy scenarios,revealing the usefulness of the model for normative research on land-use management.
基金partly funded by the National Key Research and Development Program of China(NK2023190801)the National Foreign Experts Program of China(G2023041024L)the Key Scientific Research Program of Shaanxi Provincial Education Department,China(21JT028)。
文摘Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB.
基金supported by the National Natural Science Foundation of China(Grant No.31670473)the Wuhan Institute of Technology funding to Dr.Siyue Li(Grant No.21QD02).
文摘Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.
基金the University Grants Commission,New Delhi,India,for providing financial support in the form of the Junior Research Fellowship。
文摘Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities.
基金National Natural Science Foundation of China(Nos.42371406,42071441,42222106,61976234).
文摘With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41461011)。
文摘The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.
基金supported by the Tianshan Talent Training Plan of Xinjiang,China(2022TSYCLJ0058,2022TSYCCX0001)the National Natural Science Foundation of China(2022D01D83,42377358).
文摘The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.
文摘Local populations in Cameroon thrive on forest resources and the flow of ecosystem services they provide are pivotal in sustaining national economy, improving people’s lives, safeguarding biodiversity, and mitigating the impacts of environmental changes. The exploitation of these resources invariably leads to deforestation and forest degradation. This study was designed to evaluate land use land cover change (LULCC) in the Eseka alluvial gold mining district with the aid of Landsat images. In the investigation of forest cover change, four Landsat satellite images for (1990, 2002, 2015 and 2022) were used. Ground-truthing also helped to identify the activities carried out by the local population and to determine agents, drivers and pressures of land use and land cover change. Four main land cover classes namely: forest, agricultural land, settlement/mining camps and water bodies were selected. Between 1990 and 2022, the proportion of forest decreased from 98% to 34% while those of agricultural land and settlement/mining camps increased from 2% to 60% and 0.54% to 6% respectively. Analysis showed ongoing deforestation with forest cover loss of ~98,263 ha in 32 years giving a cover change percentage of 63.94%. Kappa coefficient for the study period ranged from 0.92 to 0.99. Forest cover loss could be attributed to farming activities, wood extraction and alluvial gold mining activities. Economic motives notably the need to increase household income from a frequent demand for farm and wood products in neighbouring towns and the quest for gold were the main drivers of these activities. Hence, this study assesses the impact of human activities from the mining sector on the forest ecosystem in a bid to inform mitigation policies.
基金jointly supported by the National Natural Science Foundation of China(41702280)the projects of the China Geology Survey(DD20221754 and DD20190333)。
文摘Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.
文摘Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce the changes. The study aims to evaluate and quantify the historical changes in land use and land cover in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, from 2002 to 2022. The objective of the study was to analyse the LULC changes in Ward 2 (Mukumbura), Mt Darwin, Northern Zimbabwe, for a period of 20 years using geospatial techniques. Landsat satellite images were processed using Google Earth Engine (GEE) and the supervised classification with maximum likelihood algorithm was employed to generate LULC maps between 2002 and 2022 with a five (5) year interval, investigating the following variables, forest cover, barren land, water cover and the fields. Findings revealed a substantial reduction in forest cover by 38.8%, water bodies (wetlands, ponds, and rivers) declined by 55.6%, whilst fields (crop/agricultural fields) increased by 93.3% and the barren land cover increased by 26.3% from 2002 to 2022. These findings point to substantial changes in LULC over the observed years. LULC changes have resulted in habitat fragmentation, reduced biodiversity, and the disruption of ecosystem functions. The study concludes that if these deforestation trends, cultivation, and settlement land expansion continue, the ward will have limited indigenous fruit trees. Therefore, the causes for LULC changes must be controlled, sustainable forest resources use practiced, hence the need to domesticate the indigenous fruit trees in arborloo toilets.
文摘The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.
文摘Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case study area, this paper analyzed the long-term land use land cover change from 2002 to 2022. Satellite images were processed by using Google Earth Engine (GEE). Therefore, four major land cover classes were identified based on spectral characteristics of Land sat, namely, built-up, vegetation, cropland, bare land and water. The result revealed that barren and built-up areas increased at the expense of vegetation and water. From the four major land use land cover the large area is covered by vegetation which comprises about 192963.5 hectares followed by cropland and water consisting of 32506.43 and 1596.4 hectares respectively. The built-up area gained substantial area (most) during the study period. The reduction in some of the land cover/uses underlines the dangerous trend of the pressure poised by population growth and the changing functionality. Land cover change is influenced by a variety of societal factors operating on several spatial and temporal levels. The area estimates and spatial distributions of the LULC classes produced from the current study will assist local authorities, managers, and other stakeholders in decision-making and planning regarding forest land cover and uses.
文摘Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.
文摘This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques. Landsat images are used to estimate the LULC changes and the MODIS data for LST.The Maximum Likelihood Classification(MLC) method is used, and the LULC is classified into six categories: Agriculture Land, Barren Land, Salt Pan, Sandy Beach, Settlement, and Waterbody. Within the two decades of the present change detection study, upheave in the Settlement area of 49.89% is noticed, and the Agriculture Land is exploited by 20.09%. Salt Pan emits a high LST of 31.57°C, and the Waterbodies are noticed with a low LST of 28.9°C. However, the overall rate of LST decreased by 0.56°C during this period. This study will help policymakers make appropriate planning and management to overcome the impact of LULC and LST in the forthcoming years.
文摘Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.
文摘The availability of better economic possibilities and well-connected transportation networks has attracted people to migrate to peri-urban and rural neighbourhoods,changing the landscape of regions outside the city and fostering the growth of physical infrastructure.Using multi-temporal satellite images,the dynamics of Land Use/Land Cover(LULC)changes,the impact of urban growth on LULC changes,and regional environmental implications were investigated in the peri-urban and rural neighbourhoods of Durgapur Municipal Corporation in India.The study used different case studies to highlight the study area’s heterogeneity,as the phenomenon of change is not consistent.Landsat TM and OLI-TIRS satellite images in 1991,2001,2011,and 2021 were used to analyse the changes in LULC types.We used the relative deviation(RD),annual change intensity(ACI),uniform intensity(UI)to show the dynamicity of LULC types(agriculture land;built-up land;fallow land;vegetated land;mining area;and water bodies)during 1991-2021.This study also applied the Decision-Making Trial and Evaluation Laboratory(DEMATEL)to measure environmental sensitivity zones and find out the causes of LULC changes.According to LULC statistics,agriculture land,built-up land,and mining area increased by 51.7,95.46,and 24.79 km^(2),respectively,from 1991 to 2021.The results also suggested that built-up land and mining area had the greatest land surface temperature(LST),whereas water bodies and vegetated land showed the lowest LST.Moreover,this study looked at the relationships among LST,spectral indices(Normalized Differenced Built-up Index(NDBI),Normalized Difference Vegetation Index(NDVI),and Normalized Difference Water Index(NDWI)),and environmental sensitivity.The results showed that all of the spectral indices have the strongest association with LST,indicating that built-up land had a far stronger influence on the LST.The spectral indices indicated that the decreasing trends of vegetated land and water bodies were 4.26 and 0.43 km^(2)/a,respectively,during 1991-2021.In summary,this study can help the policy-makers to predict the increasing rate of temperature and the causes for the temperature increase with the rapid expansion of built-up land,thus making effective peri-urban planning decisions.
文摘This research studied the spatiotemporal changes in land use(LU)/land cover(LC)in Dambatta local government area,with a view to identifying the effect arising from the observable changes in land use patterns.The imageries used in the study were obtained from the National Space Research and Development Agency(NARSDA),Abuja.Spatial analytical techniques and descriptive statistical techniques were employed to analyze the data.The results showed 66.8%reduction in agricultural lands,45.5%reduction in vegetation cover,223.2%increase in built-up areas,269.1%increase in bare lands and 70%increase in water bodies within the 20 years.Spatio-temporal analysis of the three imageries revealed that agricultural lands were largely been taken over by urbanization while vegetation had rapidly given way to bare lands within the 20 years.It was observed that these changes resulted from anthropogenic activities,environmental factors and climate change.These result in the loss of farmlands,inadequate food supply,unemployment,inadequate industrial raw materials,reduction in revenue generated,forest depletion,desertification,wildlife extinction and temperature increase.While it is recommended that reforestation,land reclamation and irrigation agriculture should be promoted in the area,it is also suggested that further research should focus on the impact of climate change on land cover change in the area.