The Landau equation is studied for hard potential with-2≤γ≤1.Under a perturbation setting,a unique global solution of the Cauchy problem to the Landau equation is established in a critical Sobolev space H_(x)^(d)L_...The Landau equation is studied for hard potential with-2≤γ≤1.Under a perturbation setting,a unique global solution of the Cauchy problem to the Landau equation is established in a critical Sobolev space H_(x)^(d)L_(v)^(2)(d>3/2),which extends the results of[11]in the torus domain to the whole space R_(x)^(3).Here we utilize the pseudo-differential calculus to derive our desired result.展开更多
In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow t...In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow term inR^(2) and R^(3).Our methods rely upon approximating the system with a perturbed parabolic system and parallel transport.展开更多
In this work,we study the linearized Landau equation with soft potentials and show that the smooth solution to the Cauchy problem with initial datum in L^(2)(ℝ^(3))enjoys an analytic regularization effect,and that the...In this work,we study the linearized Landau equation with soft potentials and show that the smooth solution to the Cauchy problem with initial datum in L^(2)(ℝ^(3))enjoys an analytic regularization effect,and that the evolution of the analytic radius is the same as the heat equations.展开更多
We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interactio...We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.展开更多
文摘The Landau equation is studied for hard potential with-2≤γ≤1.Under a perturbation setting,a unique global solution of the Cauchy problem to the Landau equation is established in a critical Sobolev space H_(x)^(d)L_(v)^(2)(d>3/2),which extends the results of[11]in the torus domain to the whole space R_(x)^(3).Here we utilize the pseudo-differential calculus to derive our desired result.
文摘In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow term inR^(2) and R^(3).Our methods rely upon approximating the system with a perturbed parabolic system and parallel transport.
基金supported by the Natural Science Foundation of Hubei Province,China (2022CFB444)the Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA)+1 种基金supported by the NSFC (12031006)the Fundamental Research Funds for the Central Universities of China.
文摘In this work,we study the linearized Landau equation with soft potentials and show that the smooth solution to the Cauchy problem with initial datum in L^(2)(ℝ^(3))enjoys an analytic regularization effect,and that the evolution of the analytic radius is the same as the heat equations.
文摘We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.