[Objectives]This study was conducted to explore the occurrence levels of endocrine disruptors(EDCs)in rural areas around a county landfill in Tongren City.[Methods]The water around the landfill was sampled and analyze...[Objectives]This study was conducted to explore the occurrence levels of endocrine disruptors(EDCs)in rural areas around a county landfill in Tongren City.[Methods]The water around the landfill was sampled and analyzed.A solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry(SPE-UPLC-MS/MS)method was established for the determination of 27 EDCs.After the HLB solid-phase extraction column was activated,a water sample,which was adjusted with phosphoric acid to a pH of 2(±0.5)and added with 500 mg of disodium EDTA,was loaded,and 5 ml of water and 20%methanol water was added for washing.Next,10 ml of elution solution was added for elution,and the collected eluate was evaporated under reduced pressure at 40℃to near dryness,and 1 ml of reconstitution solution was added to a constant volume.An ACQUITY UPLC BEH C18(100×2.1 mm,2.6μm)chromatographic column was adopted for LC separation by gradient elution with pure water solution-acetonitrile as the mobile phase.For MS detection,the MRM mode was adopted for collection,and the positive and negative ion modes were switched for simultaneous determination,and the internal standard method was used for quantification.[Results]The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance.The limits of quantitation in the method were between 0.05 and 2.00 ng/L,and the recoveries ranged from 75.3%to 105.7%.[Conclusions]The method has high sensitivity,good accuracy and strong practical value.展开更多
An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the ...An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations,boundary conditions,and macroscopic forces and moments applied to the system,assuming continuous stresses at the interface between the sliding body and the retaining wall.The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models.A case study of a landfill in the Hubei Province in China is used to validate the proposed method.The theoretical stress results for a slope with a retaining wall are compared with FEMresults,and the proposed theoreticalmethod is found appropriate for calculating the stress field of a slope with a retaining wall.展开更多
Excessive leachate levels in landfills can be a major triggering mechanism for translational failure. The scope of this paper is to present the development of the calculation methods for limit equilibrium analysis of ...Excessive leachate levels in landfills can be a major triggering mechanism for translational failure. The scope of this paper is to present the development of the calculation methods for limit equilibrium analysis of translational failure of landfills and the effects of parametric variation on the factor of safety (FS) of landfills under different leachate buildup conditions. During the development of the calculation methods, 4 leachate buildup conditions are considered. The FS for an interface with high friction angle and low apparent cohesion generally drops much more quickly when leachate levels are increased than that for an interface under inverse conditions. The critical interface of a multilayer liner system with the lowest FS for the entire waste mass can shift from one to another with changes in the leachate levels. The different interfaces of a multilayer liner will have different FS-values under different leachate buildup conditions.展开更多
Solid waste landfills need to have final covers to 1) reduce the infiltration of rainfall into the waste mass and 2) reduce surface greenhouse gas emissions. Most regulations require that such final covers include hyd...Solid waste landfills need to have final covers to 1) reduce the infiltration of rainfall into the waste mass and 2) reduce surface greenhouse gas emissions. Most regulations require that such final covers include hydraulic barriers, such as compacted clays with or without geomembrane. Significant research has been undertaken to allow the use of evapotranspiration-based covers (often termed: Evapotranspiration (ET) Cover, Water Balance Covers, or Phyto Covers) as an alternative to the barrier concept covers. ET covers are designed so that they have the capacity to store water by the soil and also have plants or vegetation to remove the stored water. In ET covers, plant roots can enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil. Therefore, biological methane oxidation (a natural process in landfill soils) can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This paper summarizes a study to investigate the capacity of an ET cover to reduce surface greenhouse gas emissions when implemented on a solid waste landfill. This study consisted of using a numerical model to estimate methane emission and oxidation through an ET cover under average climatic conditions in Bennignton, Nebraska, USA. Different simulations were performed using different methane loading flux (5 to 200 gm-2·d-1) as the bottom boundary. For all simulations, surface emissions were the lowest during the growing season and during warmer days of the year. Percent oxidation is the highest during the growing season and during warmer days. The lowest modeled surface emissions were always obtained during the growing season. Finally, correlations between percent oxidation and methane loading into simulated ET covers were proposed to estimate methane emissions and methane oxidation in ET covers.展开更多
Clay-solidified grouting curtains are commonly used for remediation by containment or pollution prevention, in addition to their use as a barrier to water flow in municipal solid waste(MSW) landfills. A hydrological m...Clay-solidified grouting curtains are commonly used for remediation by containment or pollution prevention, in addition to their use as a barrier to water flow in municipal solid waste(MSW) landfills. A hydrological model.of water flow and a hydrodynamic model of contaminant are presented to simulate the migration of leachate through clay-solidified grouting curtain in MSW landfills, with particular attention paid to the role of diffusive and adsorptive fluxes in contaminant transport. The models were applied to simulate the sensitivity of the curtain's behavior to changes in parameters, such as thickness, depth, permeability coefficient, diffusion coefficient,resistance coefficient and concentration, and also to demonstrate the contaminant distribution on the evolution of travel time and offset distance of clay-solidified grouting curtain in landfills. It is found that a part of leachate components stays or is retarded in clay-solidified grouting curtain by precipitate or exchange, the retention rate is closely related to composition of clay-solidified grouting curtain, more than 800%, and the maximum occurs at the cementclay ratio of 2: 4 under experimental conditions. Contamination distribution is variable on travel time and offset distance, the highest concentration takes place where the contamination intensity is nearest to the pollution resource or takes place at early middle period of transport, and the pollutant attenuates gradually. The results indicate that claysolidified grouting curtain with a proper thickness, a low permeability coefficient and a high resistance coefficient might serve as a sufficiently effective vertical barrier against leachate seepage and contamination migration in MSWlandfills.展开更多
The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the influence of the effective stress,chemical interactions,freeze-thaw cycles and temperature gradients.The changes of ...The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the influence of the effective stress,chemical interactions,freeze-thaw cycles and temperature gradients.The changes of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity,regardless of the cation concentration or the thickness of the adsorbed layer.The hydraulic conductivity is related to the relative abundance of monovalent and divalent cation(RMD),and RMD has a great effect on the hydraulic conductivity in weak solution.The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal,which has been proved after 150 freeze-thaw cycles.The potential of desiccation cracking increases with the increasing temperature gradient and is related to the initial subsoil water content,the applied overburden stress,etc.展开更多
In recent years, geosynthetic Clay liners (GCLs) are widely used in different kinds of anti-seep-age projects and the anti-seepage availabilities of GCLs are regarded as increasingly important by engineers. Anti-seepa...In recent years, geosynthetic Clay liners (GCLs) are widely used in different kinds of anti-seep-age projects and the anti-seepage availabilities of GCLs are regarded as increasingly important by engineers. Anti-seepage effectiveness of GCLs involves at least two aspects, such as Hydraulic conductivity of GCLs under engi-neering practice conditions, and Absorption ability of bentonite in GCLs in the course of liq-uid permeation. In this paper, Hydraulic con-ductivity tests are performed to obtain seepage coefficient of GCLs, taking liquids such as dis-tilled, deioned water and landfill leachate, and solutions with single-species cation as the hy-dration and permeation liquid. The results Show that cation valence, cation concentration and hydration ionic radius in hydration and permea-tion liquids have influences on hydraulic con-ductivity of GCLs.展开更多
The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitr...The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.展开更多
The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(fir...The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(firstorder decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition,degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t.Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general,the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.展开更多
1.Introduction With the continuous improvement of living standards and the rapid development of urbanization,the annual production of municipal domestic waste in China has reached over 2108 t and is expected to increa...1.Introduction With the continuous improvement of living standards and the rapid development of urbanization,the annual production of municipal domestic waste in China has reached over 2108 t and is expected to increase in the future.Landfill technology,which is the main method for the traditional treatment of domestic waste,accounts for more than 60%of the total treatment in China.However,current single-landfill technologies have a series of problems(Fig.1(a)).First,recyclable resources within the vast amount of domestic waste often cannot be recycled and utilized,thereby causing resources to be wasted and deviated from sustainable cycles.Second,the amount of domestic waste that is decomposed and disposed of by landfill technology is considerably less than the amount entering landfill sites each year.Accordingly,a large area of valuable land must be developed for the construction of new landfill sites.展开更多
According to relevant new regulations in China,a composite liner system involving geosynthetic materials must be installed at the bottom of an expanded landfill.The deformation and integrity of the composite liner und...According to relevant new regulations in China,a composite liner system involving geosynthetic materials must be installed at the bottom of an expanded landfill.The deformation and integrity of the composite liner under a variety of factors are important issue to be considered in the design of a landfill expansion.In this paper,we investigate the strain distribution in geosynthetic materials within the composite liner system of expanded landfills,including strains in geosynthetic materials resulting from overall settlement and lateral movement of landfills,localized subsidence in landfills,and differential settlement around gas venting wells.The allowable strains of geosynthetic materials are discussed based on the results of tensile tests,and the corresponding design criteria for composite liner systems are proposed.Meanwhile,practical measures allowing strain control in geosynthetic materials used in landfill engineering are proposed.展开更多
A comprehensive assessment of heavy metals and organic content was performed for leachates produced from a number of old and new landfills in Jordanover 9 month in efforts to set a framework for treatment regulations....A comprehensive assessment of heavy metals and organic content was performed for leachates produced from a number of old and new landfills in Jordanover 9 month in efforts to set a framework for treatment regulations. All leachates were basic (pH = 7 - 9) and have high electric conductivity and high organic contents (COD = 3000 - 500,000 mg/L, TOC= 500 - 21,000 mg/L). The organic content was inversely proportional to the age of landfill. Heavy metals analysis showed no significant threat of Co, Zn, Pb and Al in any site. Meanwhile, the concentrations of Cr, Mn, Ni, Cd and As were high, exceeding local and international standard limits. Typical physical, chemical and biological treatments can be employed to upgrade the leachates of the active Ghabawi and Akaider sites. Whereas for the high organic strength of Russeifeh, an adsorption treatment by activated carbon is recommended.展开更多
This paper studies a landfill where there are three faults running through. As serious pollution has occurred to the geological environment, the landfill is to be closed up and renovated. The paper aims to explore the...This paper studies a landfill where there are three faults running through. As serious pollution has occurred to the geological environment, the landfill is to be closed up and renovated. The paper aims to explore the role of fracture structure in leachate pollution at the landfill. The research was carried out in several stages. First, mathematical models of the pre-renovation landfill with three faults running through and the landfill after renovation were established. And then, the boundary conditions and parameters of the two mathematical models were determined. The groundwater level of the landfills was simulated in order to modify the two mathematical models. As a result, a feasible mathematical model was achieved. Based on this model, a comparison was made of the COD concentration variations in the inside leachate and outside leachate between the two landfills. Accordingly, the impacts of the fracture structure on the pollution of leachate at the landfills could be identified. The study results show that while faults contribute to the migration of ieachate, they also serve as a confluence of leachate, thus further deteriorating the environment. The COD concentrations of the inside leachate and the outside leachate of the pre-renovation landfill are respectively 800 mg/L and 220 mg/L higher than those of the post-renovation landfill. Therefore, measures must be taken to handle the ieachate seepage in areas where there are faults as well as the neighboring areas so as to get the environmental pollution under control.展开更多
The problem of solid waste landfills on Caspian Sea coastlines is one of the current concerns of the Iranian environmental authorities. Physical and environmental constraints as well as shortcomings in present municip...The problem of solid waste landfills on Caspian Sea coastlines is one of the current concerns of the Iranian environmental authorities. Physical and environmental constraints as well as shortcomings in present municipal solid waste management are the main factors for environmental pollution and natural resources destruction in this geographical region. In order to reduce the above problems, this study has been carried out on the basis of a comparative assessment of the existing condition of landfill sites in natural ecosystems. In this study, 48 cities of the region have been investigated. All of them are located in Gilan and Mazandaran provinces. Total daily waste production in the study area is about 1209 tons that are dumped in open spaces and/or in aquatic and terrestrial ecosystems. Surveying of 53 physical, adaptability and constraint parameters as well as hygiene and environmental parameters in the landfills, based on “Monavari-94 Method” indicate that the main problem in all of them is a high groundwater table. In 42% of landfills, the groundwater level is between from 0.5 to 2 meters. This phenomenon may cause severe risks due to the infiltration of leachate into potable groundwater. Indeed, the results of the study show that 87.5% of the landfills are located in areas with unacceptable conditions. In spite of geographical and environmental problems and constraints and as a final alternative in this respect, the need for sanitary and technical solid waste management is the main need of the study areas.展开更多
Integrated solid waste management (ISWM) involves approaching solid waste in a comprehensive manner with careful selection of appropriate technology. The aim of good waste management is to push waste up the hierarchy ...Integrated solid waste management (ISWM) involves approaching solid waste in a comprehensive manner with careful selection of appropriate technology. The aim of good waste management is to push waste up the hierarchy with landfill as a last resort. However given the current sorting technology, heterogeneous residues called Fines are created, they are considered at the present time as non-sortable and non-recoverable sent to second class landfills. A previous conducted study has revealed that fines contain several problematic substances for an inert classification. This article summarizes the most important problematic substances in fines for their acceptance inert landfills. These substances were identified by analyzing several samples collected from a siting of non-hazardous solid waste in the region of Rhône-Alpes in France. Eluate Analysis and fines analysis were conducted in order to identify the presence of any component that could prevent the classification of fines in an inert landfill. The obtained results were compared with the limit values for waste acceptance in an inert landfill. The study concluded that the six top-ranking problematic substances are Copper, Mercury, Antimony, Chloride, Fluoride and Sulfates, this study gives additional information on the origins of these substances that deserves particular attention to better limit their presence in the input of fines stream.展开更多
A new in situ treatment technique was being utilized on a part of the Dorfweiher landfill in Konstanz, Germany to reduce the aftercare period. From 2010 to 2012, the landfill was aerated intermittently with low pressu...A new in situ treatment technique was being utilized on a part of the Dorfweiher landfill in Konstanz, Germany to reduce the aftercare period. From 2010 to 2012, the landfill was aerated intermittently with low pressure. Outgoing air was treated passively in an open biofilter which covers the landfill surface. The landfill was aerated by means of 80 air injection wells arranged area-wide in a 10 m grid. An elaborate measuring process and technological controls are being utilized in the pilot scheme. The data collected offer interesting insights about the processes during aeration, allowing optimization of the aeration strategy depending on changes of the conditions in the landfill. During the three-year aeration phase, conditions have changed inside the landfill section in various ways. In numerous zones of the landfill body, the aeration caused aerobic conditions with a decline of methane production. Accelerated settlings are measured up to 11%. The effects of the aerobic stabilization on the landfill are evaluated in a two-year monitoring phase started in 2013.展开更多
The CH4 is one of the six Greenhouse Effect Gases (GEG) that is mentioned in the Kyoto Protocol. The GEG is generated by the anthropic activities which are conducive to climate changes if their management is not condu...The CH4 is one of the six Greenhouse Effect Gases (GEG) that is mentioned in the Kyoto Protocol. The GEG is generated by the anthropic activities which are conducive to climate changes if their management is not conducted in a proper way. The main purpose of the environment policy is the reduction of the GEG emission. It is well-known that the CH4 gas emission from municipal solid waste MSW landfills is responsible for 4 ÷ 5% of the total Greenhouse Effect. It is necessary to have a practical method to calculate the quantitative CH4 gas emission, in order to apply an efficient management of the CH4 gas emission from MSW landfills, conforming or non-conforming. This method has to be transparent, credible, coherent, and applicable both for conforming and non-conforming MSW deposits. This paper proposes a new estimation calculation method of the CH4 gas emission from all MSW deposits in Romania. The IPCC group of experts has made recommendations related to the estimation of CH4 but the European Union (EU) admits that the environmental conditions are not the same in every Member State. The annual evolution of CO2 for the CH4 gas emission at every MSW location is valuable information for the Environment Authority with a view to realistic environmental planning and for an efficient policy to be applied in order to reduce the greenhouse effect of MSW landfills.展开更多
The explosive increase of construction and demolition waste(CDW) caused the insufficient source separation and emergency disposal at domestic waste landfills in many developing countries. Some organic fractions were i...The explosive increase of construction and demolition waste(CDW) caused the insufficient source separation and emergency disposal at domestic waste landfills in many developing countries. Some organic fractions were introduced to the CDW landfill process and resulted in serious odor pollution. To comprehensively explore the impacts of organic matters on odor emission patterns, five CDW landfills(OIL), with organic matters/inert CDW components(O/I) from 5% to 30%, and the control group only with inert components(IL) or organics(OL) were simulated at the laboratory. The chemical and olfactive characters of odors were evaluated using the emission rate of 94 odorants content(ER_(total)), theory odor concentration(TOC_(total)), and e-nose concentration(ER_(ENC)), and their correlations with waste properties were also analyzed. It was found that the main contributors to ER_(total)(IL: 93.0% NH_(3);OIL: 41.6% sulfides, 31.0% NH_(3), 25.9% oxygenated compounds) and TOC_(total)(IL: 64.1% CH_3SH, 28.2% NH_(3);OIL: 71.7% CH_(3)SH, 24.8% H_(2)S) changed significantly. With the rise of O/I, ER_(total), TOC_(total), and ER_(ENC) increased by 10.9, 20.6, and 2.1 times, respectively. And the organics content in CDW should be less than 10%(i.e., DOC < 101.3 mg/L). The good regressions between waste properties(DOC, DN, pH) and ER_(total),( r = 0.86, 0.86,-0.88, p < 0.05), TOC_(total),( r = 0.82, 0.79, -0.82, p < 0.05) implied that the carbon sources and acidic substances relating to organics degradation might result in that increase. Besides, the correlation analysis results( ER_(ENC) vs. TOC_(total,, r = 0.96, p < 0.01;vs. ER_(ENC), r = 0.86, p < 0.05) indicated that e-nose perhaps was a reliable odor continuous monitoring tool for CDW landfills.展开更多
1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills ...1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills and dumpsites),which are prevalent in global cities,emit CH4 generated from the anaerobic biodegradation of municipal solid waste(MSW).Notably,the proportions of CH4 emissions from disposal sites surpass 50%of the total CH4 emissions in some megalopolises[3].CH4 has a high global warming potential(GWP),being 28 times stronger than carbon dioxide(CO_(2))over a 100-year period and 80 times stronger over a 20-year period[4].Understanding and mitigating CH4 emissions from solid waste disposal sites is particularly pertinent and pressing,considering that the latest Synthesis Report from the Intergovernmental Panel on Climate Change(IPCC)emphasizes that the current pace of mitigation and adaptation policies and measures falls short of restraining global temperature rise to under 1.5℃ within the 21st century[4].More than 150 countries signed the Global Methane Pledge at the United Nations Climate Change Conference in Glasgow(COP26),which aims to reduce global annual CH4 emissions by 30%by 2030,compared with emissions in 2020[5].展开更多
基金Supported by Tongren Science and Technology Planning Project (TSKY[2022]42)Education Science Planning Project of Department of Education of Guizhou Province (2023B111).
文摘[Objectives]This study was conducted to explore the occurrence levels of endocrine disruptors(EDCs)in rural areas around a county landfill in Tongren City.[Methods]The water around the landfill was sampled and analyzed.A solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry(SPE-UPLC-MS/MS)method was established for the determination of 27 EDCs.After the HLB solid-phase extraction column was activated,a water sample,which was adjusted with phosphoric acid to a pH of 2(±0.5)and added with 500 mg of disodium EDTA,was loaded,and 5 ml of water and 20%methanol water was added for washing.Next,10 ml of elution solution was added for elution,and the collected eluate was evaporated under reduced pressure at 40℃to near dryness,and 1 ml of reconstitution solution was added to a constant volume.An ACQUITY UPLC BEH C18(100×2.1 mm,2.6μm)chromatographic column was adopted for LC separation by gradient elution with pure water solution-acetonitrile as the mobile phase.For MS detection,the MRM mode was adopted for collection,and the positive and negative ion modes were switched for simultaneous determination,and the internal standard method was used for quantification.[Results]The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance.The limits of quantitation in the method were between 0.05 and 2.00 ng/L,and the recoveries ranged from 75.3%to 105.7%.[Conclusions]The method has high sensitivity,good accuracy and strong practical value.
基金supported by the National Key R&D Program(No.2018YFC1504901)and by the Natural Science Foundation of China(Grant No.42071264)supported by the Geological Hazard Prevention Project in The Three Gorges Reservoirs(Grant No.0001212015CC60005).
文摘An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations,boundary conditions,and macroscopic forces and moments applied to the system,assuming continuous stresses at the interface between the sliding body and the retaining wall.The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models.A case study of a landfill in the Hubei Province in China is used to validate the proposed method.The theoretical stress results for a slope with a retaining wall are compared with FEMresults,and the proposed theoreticalmethod is found appropriate for calculating the stress field of a slope with a retaining wall.
文摘Excessive leachate levels in landfills can be a major triggering mechanism for translational failure. The scope of this paper is to present the development of the calculation methods for limit equilibrium analysis of translational failure of landfills and the effects of parametric variation on the factor of safety (FS) of landfills under different leachate buildup conditions. During the development of the calculation methods, 4 leachate buildup conditions are considered. The FS for an interface with high friction angle and low apparent cohesion generally drops much more quickly when leachate levels are increased than that for an interface under inverse conditions. The critical interface of a multilayer liner system with the lowest FS for the entire waste mass can shift from one to another with changes in the leachate levels. The different interfaces of a multilayer liner will have different FS-values under different leachate buildup conditions.
文摘Solid waste landfills need to have final covers to 1) reduce the infiltration of rainfall into the waste mass and 2) reduce surface greenhouse gas emissions. Most regulations require that such final covers include hydraulic barriers, such as compacted clays with or without geomembrane. Significant research has been undertaken to allow the use of evapotranspiration-based covers (often termed: Evapotranspiration (ET) Cover, Water Balance Covers, or Phyto Covers) as an alternative to the barrier concept covers. ET covers are designed so that they have the capacity to store water by the soil and also have plants or vegetation to remove the stored water. In ET covers, plant roots can enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil. Therefore, biological methane oxidation (a natural process in landfill soils) can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This paper summarizes a study to investigate the capacity of an ET cover to reduce surface greenhouse gas emissions when implemented on a solid waste landfill. This study consisted of using a numerical model to estimate methane emission and oxidation through an ET cover under average climatic conditions in Bennignton, Nebraska, USA. Different simulations were performed using different methane loading flux (5 to 200 gm-2·d-1) as the bottom boundary. For all simulations, surface emissions were the lowest during the growing season and during warmer days of the year. Percent oxidation is the highest during the growing season and during warmer days. The lowest modeled surface emissions were always obtained during the growing season. Finally, correlations between percent oxidation and methane loading into simulated ET covers were proposed to estimate methane emissions and methane oxidation in ET covers.
文摘Clay-solidified grouting curtains are commonly used for remediation by containment or pollution prevention, in addition to their use as a barrier to water flow in municipal solid waste(MSW) landfills. A hydrological model.of water flow and a hydrodynamic model of contaminant are presented to simulate the migration of leachate through clay-solidified grouting curtain in MSW landfills, with particular attention paid to the role of diffusive and adsorptive fluxes in contaminant transport. The models were applied to simulate the sensitivity of the curtain's behavior to changes in parameters, such as thickness, depth, permeability coefficient, diffusion coefficient,resistance coefficient and concentration, and also to demonstrate the contaminant distribution on the evolution of travel time and offset distance of clay-solidified grouting curtain in landfills. It is found that a part of leachate components stays or is retarded in clay-solidified grouting curtain by precipitate or exchange, the retention rate is closely related to composition of clay-solidified grouting curtain, more than 800%, and the maximum occurs at the cementclay ratio of 2: 4 under experimental conditions. Contamination distribution is variable on travel time and offset distance, the highest concentration takes place where the contamination intensity is nearest to the pollution resource or takes place at early middle period of transport, and the pollutant attenuates gradually. The results indicate that claysolidified grouting curtain with a proper thickness, a low permeability coefficient and a high resistance coefficient might serve as a sufficiently effective vertical barrier against leachate seepage and contamination migration in MSWlandfills.
文摘The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the influence of the effective stress,chemical interactions,freeze-thaw cycles and temperature gradients.The changes of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity,regardless of the cation concentration or the thickness of the adsorbed layer.The hydraulic conductivity is related to the relative abundance of monovalent and divalent cation(RMD),and RMD has a great effect on the hydraulic conductivity in weak solution.The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal,which has been proved after 150 freeze-thaw cycles.The potential of desiccation cracking increases with the increasing temperature gradient and is related to the initial subsoil water content,the applied overburden stress,etc.
文摘In recent years, geosynthetic Clay liners (GCLs) are widely used in different kinds of anti-seep-age projects and the anti-seepage availabilities of GCLs are regarded as increasingly important by engineers. Anti-seepage effectiveness of GCLs involves at least two aspects, such as Hydraulic conductivity of GCLs under engi-neering practice conditions, and Absorption ability of bentonite in GCLs in the course of liq-uid permeation. In this paper, Hydraulic con-ductivity tests are performed to obtain seepage coefficient of GCLs, taking liquids such as dis-tilled, deioned water and landfill leachate, and solutions with single-species cation as the hy-dration and permeation liquid. The results Show that cation valence, cation concentration and hydration ionic radius in hydration and permea-tion liquids have influences on hydraulic con-ductivity of GCLs.
基金Projects(41530637,41877222,41702290)supported by the National Natural Science Foundation of China
文摘The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.
基金funded by the Project Study on Key Issues of China City Carbon Emission Inventory (No. 41101500)supported by National Natural Science Foundation of China
文摘The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(firstorder decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition,degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t.Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general,the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.
基金the National Key Research and Development Program of China(2018YFC1900102)the National Natural Science Foundation of China(51325804 and 51808519).
文摘1.Introduction With the continuous improvement of living standards and the rapid development of urbanization,the annual production of municipal domestic waste in China has reached over 2108 t and is expected to increase in the future.Landfill technology,which is the main method for the traditional treatment of domestic waste,accounts for more than 60%of the total treatment in China.However,current single-landfill technologies have a series of problems(Fig.1(a)).First,recyclable resources within the vast amount of domestic waste often cannot be recycled and utilized,thereby causing resources to be wasted and deviated from sustainable cycles.Second,the amount of domestic waste that is decomposed and disposed of by landfill technology is considerably less than the amount entering landfill sites each year.Accordingly,a large area of valuable land must be developed for the construction of new landfill sites.
基金Supported by the National Natural Science Foundation of China (50538080)
文摘According to relevant new regulations in China,a composite liner system involving geosynthetic materials must be installed at the bottom of an expanded landfill.The deformation and integrity of the composite liner under a variety of factors are important issue to be considered in the design of a landfill expansion.In this paper,we investigate the strain distribution in geosynthetic materials within the composite liner system of expanded landfills,including strains in geosynthetic materials resulting from overall settlement and lateral movement of landfills,localized subsidence in landfills,and differential settlement around gas venting wells.The allowable strains of geosynthetic materials are discussed based on the results of tensile tests,and the corresponding design criteria for composite liner systems are proposed.Meanwhile,practical measures allowing strain control in geosynthetic materials used in landfill engineering are proposed.
文摘A comprehensive assessment of heavy metals and organic content was performed for leachates produced from a number of old and new landfills in Jordanover 9 month in efforts to set a framework for treatment regulations. All leachates were basic (pH = 7 - 9) and have high electric conductivity and high organic contents (COD = 3000 - 500,000 mg/L, TOC= 500 - 21,000 mg/L). The organic content was inversely proportional to the age of landfill. Heavy metals analysis showed no significant threat of Co, Zn, Pb and Al in any site. Meanwhile, the concentrations of Cr, Mn, Ni, Cd and As were high, exceeding local and international standard limits. Typical physical, chemical and biological treatments can be employed to upgrade the leachates of the active Ghabawi and Akaider sites. Whereas for the high organic strength of Russeifeh, an adsorption treatment by activated carbon is recommended.
基金the Natural Science Foundation of Chongqing (Grant No.cstc.2004BB7059);the Foundation of Municipal Committee of Chongqing City(No.200511).
文摘This paper studies a landfill where there are three faults running through. As serious pollution has occurred to the geological environment, the landfill is to be closed up and renovated. The paper aims to explore the role of fracture structure in leachate pollution at the landfill. The research was carried out in several stages. First, mathematical models of the pre-renovation landfill with three faults running through and the landfill after renovation were established. And then, the boundary conditions and parameters of the two mathematical models were determined. The groundwater level of the landfills was simulated in order to modify the two mathematical models. As a result, a feasible mathematical model was achieved. Based on this model, a comparison was made of the COD concentration variations in the inside leachate and outside leachate between the two landfills. Accordingly, the impacts of the fracture structure on the pollution of leachate at the landfills could be identified. The study results show that while faults contribute to the migration of ieachate, they also serve as a confluence of leachate, thus further deteriorating the environment. The COD concentrations of the inside leachate and the outside leachate of the pre-renovation landfill are respectively 800 mg/L and 220 mg/L higher than those of the post-renovation landfill. Therefore, measures must be taken to handle the ieachate seepage in areas where there are faults as well as the neighboring areas so as to get the environmental pollution under control.
文摘The problem of solid waste landfills on Caspian Sea coastlines is one of the current concerns of the Iranian environmental authorities. Physical and environmental constraints as well as shortcomings in present municipal solid waste management are the main factors for environmental pollution and natural resources destruction in this geographical region. In order to reduce the above problems, this study has been carried out on the basis of a comparative assessment of the existing condition of landfill sites in natural ecosystems. In this study, 48 cities of the region have been investigated. All of them are located in Gilan and Mazandaran provinces. Total daily waste production in the study area is about 1209 tons that are dumped in open spaces and/or in aquatic and terrestrial ecosystems. Surveying of 53 physical, adaptability and constraint parameters as well as hygiene and environmental parameters in the landfills, based on “Monavari-94 Method” indicate that the main problem in all of them is a high groundwater table. In 42% of landfills, the groundwater level is between from 0.5 to 2 meters. This phenomenon may cause severe risks due to the infiltration of leachate into potable groundwater. Indeed, the results of the study show that 87.5% of the landfills are located in areas with unacceptable conditions. In spite of geographical and environmental problems and constraints and as a final alternative in this respect, the need for sanitary and technical solid waste management is the main need of the study areas.
文摘Integrated solid waste management (ISWM) involves approaching solid waste in a comprehensive manner with careful selection of appropriate technology. The aim of good waste management is to push waste up the hierarchy with landfill as a last resort. However given the current sorting technology, heterogeneous residues called Fines are created, they are considered at the present time as non-sortable and non-recoverable sent to second class landfills. A previous conducted study has revealed that fines contain several problematic substances for an inert classification. This article summarizes the most important problematic substances in fines for their acceptance inert landfills. These substances were identified by analyzing several samples collected from a siting of non-hazardous solid waste in the region of Rhône-Alpes in France. Eluate Analysis and fines analysis were conducted in order to identify the presence of any component that could prevent the classification of fines in an inert landfill. The obtained results were compared with the limit values for waste acceptance in an inert landfill. The study concluded that the six top-ranking problematic substances are Copper, Mercury, Antimony, Chloride, Fluoride and Sulfates, this study gives additional information on the origins of these substances that deserves particular attention to better limit their presence in the input of fines stream.
文摘A new in situ treatment technique was being utilized on a part of the Dorfweiher landfill in Konstanz, Germany to reduce the aftercare period. From 2010 to 2012, the landfill was aerated intermittently with low pressure. Outgoing air was treated passively in an open biofilter which covers the landfill surface. The landfill was aerated by means of 80 air injection wells arranged area-wide in a 10 m grid. An elaborate measuring process and technological controls are being utilized in the pilot scheme. The data collected offer interesting insights about the processes during aeration, allowing optimization of the aeration strategy depending on changes of the conditions in the landfill. During the three-year aeration phase, conditions have changed inside the landfill section in various ways. In numerous zones of the landfill body, the aeration caused aerobic conditions with a decline of methane production. Accelerated settlings are measured up to 11%. The effects of the aerobic stabilization on the landfill are evaluated in a two-year monitoring phase started in 2013.
文摘The CH4 is one of the six Greenhouse Effect Gases (GEG) that is mentioned in the Kyoto Protocol. The GEG is generated by the anthropic activities which are conducive to climate changes if their management is not conducted in a proper way. The main purpose of the environment policy is the reduction of the GEG emission. It is well-known that the CH4 gas emission from municipal solid waste MSW landfills is responsible for 4 ÷ 5% of the total Greenhouse Effect. It is necessary to have a practical method to calculate the quantitative CH4 gas emission, in order to apply an efficient management of the CH4 gas emission from MSW landfills, conforming or non-conforming. This method has to be transparent, credible, coherent, and applicable both for conforming and non-conforming MSW deposits. This paper proposes a new estimation calculation method of the CH4 gas emission from all MSW deposits in Romania. The IPCC group of experts has made recommendations related to the estimation of CH4 but the European Union (EU) admits that the environmental conditions are not the same in every Member State. The annual evolution of CO2 for the CH4 gas emission at every MSW location is valuable information for the Environment Authority with a view to realistic environmental planning and for an efficient policy to be applied in order to reduce the greenhouse effect of MSW landfills.
基金supported by the Project of Scientific Research Plan of Science and Technology Commission of Shanghai Municipality(No.17DZ1202404)the National Natural Science Foundation of China(No.51678357,U1662128)National Key Research and Development Program of China(No.2018YFC1900704)。
文摘The explosive increase of construction and demolition waste(CDW) caused the insufficient source separation and emergency disposal at domestic waste landfills in many developing countries. Some organic fractions were introduced to the CDW landfill process and resulted in serious odor pollution. To comprehensively explore the impacts of organic matters on odor emission patterns, five CDW landfills(OIL), with organic matters/inert CDW components(O/I) from 5% to 30%, and the control group only with inert components(IL) or organics(OL) were simulated at the laboratory. The chemical and olfactive characters of odors were evaluated using the emission rate of 94 odorants content(ER_(total)), theory odor concentration(TOC_(total)), and e-nose concentration(ER_(ENC)), and their correlations with waste properties were also analyzed. It was found that the main contributors to ER_(total)(IL: 93.0% NH_(3);OIL: 41.6% sulfides, 31.0% NH_(3), 25.9% oxygenated compounds) and TOC_(total)(IL: 64.1% CH_3SH, 28.2% NH_(3);OIL: 71.7% CH_(3)SH, 24.8% H_(2)S) changed significantly. With the rise of O/I, ER_(total), TOC_(total), and ER_(ENC) increased by 10.9, 20.6, and 2.1 times, respectively. And the organics content in CDW should be less than 10%(i.e., DOC < 101.3 mg/L). The good regressions between waste properties(DOC, DN, pH) and ER_(total),( r = 0.86, 0.86,-0.88, p < 0.05), TOC_(total),( r = 0.82, 0.79, -0.82, p < 0.05) implied that the carbon sources and acidic substances relating to organics degradation might result in that increase. Besides, the correlation analysis results( ER_(ENC) vs. TOC_(total,, r = 0.96, p < 0.01;vs. ER_(ENC), r = 0.86, p < 0.05) indicated that e-nose perhaps was a reliable odor continuous monitoring tool for CDW landfills.
基金Nanyang Technological University(NTU),Singapore,for providing research scholarships for this study.The authors thank the supports from Debris of the Anthropocene to Resources(DotA2)Lab at NTU.
文摘1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills and dumpsites),which are prevalent in global cities,emit CH4 generated from the anaerobic biodegradation of municipal solid waste(MSW).Notably,the proportions of CH4 emissions from disposal sites surpass 50%of the total CH4 emissions in some megalopolises[3].CH4 has a high global warming potential(GWP),being 28 times stronger than carbon dioxide(CO_(2))over a 100-year period and 80 times stronger over a 20-year period[4].Understanding and mitigating CH4 emissions from solid waste disposal sites is particularly pertinent and pressing,considering that the latest Synthesis Report from the Intergovernmental Panel on Climate Change(IPCC)emphasizes that the current pace of mitigation and adaptation policies and measures falls short of restraining global temperature rise to under 1.5℃ within the 21st century[4].More than 150 countries signed the Global Methane Pledge at the United Nations Climate Change Conference in Glasgow(COP26),which aims to reduce global annual CH4 emissions by 30%by 2030,compared with emissions in 2020[5].