Friction stir welding(FSW)has been extensively adopted to fabricate aluminium alloy joints by incorporating various welding parameters that include welding speed,rotational speed,diameters of shoulder and pin and tool...Friction stir welding(FSW)has been extensively adopted to fabricate aluminium alloy joints by incorporating various welding parameters that include welding speed,rotational speed,diameters of shoulder and pin and tool tilt angle.FSW parameters significantly affect the weld strength.Tool tilt angle is one of the significant process parameters among the weld parameters.The present study focused on the effect of tool tilt angle on strength of friction stir lap welding of AA2014-T6 aluminium alloy.The tool tilt angle was varied between 0°and 4°with an equal increment of 1°.Other process parameters were kept constant.Macrostructure and microstructure analysis,microhardness measurement,scanning electron micrograph,transmission electron micrograph and energy dispersive spectroscopy analysis were performed to evaluate the lap shear strength of friction stir lap welded joint.Results proved that,defect-free weld joint was obtained while using a tool tilt angle of 1°to 3°.However,sound joints were welded using a tool tilt angle of 2°,which had the maximum lap shear strength of 14.42 kN and microhardness of HV 132.The joints welded using tool tilt angles of 1°and 3°yielded inferior lap shear strength due to unbalanced material flow in the weld region during FSW.展开更多
Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in re...Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in relation to welding energy.Mg/Al interface was superseded by Mg/Ag and Al/Ag interfaces,and unfavorable Mg门A-intermetallic compound was eliminated.Ag foil was observed to be intact in the nugget center,while it was broken or dissolved at the nugget edge at high welding energy levels.The diffusion layer at the Mg/Ag interface consisted of two distinctive sub-layers:Mg3Ag intermetallic compound adjoining Ag foil,and Mg3Ag-l-Mg eutectic structure adjacent to Mg.Only a thin diffusion layer consisting mainly of Ag3Al occurred al lhe Al/Ag interface.The tensile lap shear strength first increased,reached its peak value,and then decreased with increasing welding energy.The shear strength achieved in the present study was〜31%higher than that of the joint without interlayer.Interfacial failure occurred at all energy levels,with Ag foil particles or fragments being stuck on both Mg and Al sides due to its intense interaction with Mg and Al via accelerated diffusion during USW.The results obtained pave the way for the challenging dissimilar welding between Mg and Al alloys.展开更多
基金Aeronautical Development Agency (ADA), Bangalore, India, for the financial support to carry out this investigation through an R&D project No: FSED 83.07.03
文摘Friction stir welding(FSW)has been extensively adopted to fabricate aluminium alloy joints by incorporating various welding parameters that include welding speed,rotational speed,diameters of shoulder and pin and tool tilt angle.FSW parameters significantly affect the weld strength.Tool tilt angle is one of the significant process parameters among the weld parameters.The present study focused on the effect of tool tilt angle on strength of friction stir lap welding of AA2014-T6 aluminium alloy.The tool tilt angle was varied between 0°and 4°with an equal increment of 1°.Other process parameters were kept constant.Macrostructure and microstructure analysis,microhardness measurement,scanning electron micrograph,transmission electron micrograph and energy dispersive spectroscopy analysis were performed to evaluate the lap shear strength of friction stir lap welded joint.Results proved that,defect-free weld joint was obtained while using a tool tilt angle of 1°to 3°.However,sound joints were welded using a tool tilt angle of 2°,which had the maximum lap shear strength of 14.42 kN and microhardness of HV 132.The joints welded using tool tilt angles of 1°and 3°yielded inferior lap shear strength due to unbalanced material flow in the weld region during FSW.
基金The authors would like to thank the National Natural Science Foundation of China(Grant No.51971183)Natural Sciences and Engineering Research Council of Canada(NSERC)+1 种基金Fundamental Research Funds for the Central Universities(XDJK2018B108,SWU119065)Venture and Innovation Support Program for Chongqing Overseas Returnees(CX2018082)in the form of international research collaboration.
文摘Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in relation to welding energy.Mg/Al interface was superseded by Mg/Ag and Al/Ag interfaces,and unfavorable Mg门A-intermetallic compound was eliminated.Ag foil was observed to be intact in the nugget center,while it was broken or dissolved at the nugget edge at high welding energy levels.The diffusion layer at the Mg/Ag interface consisted of two distinctive sub-layers:Mg3Ag intermetallic compound adjoining Ag foil,and Mg3Ag-l-Mg eutectic structure adjacent to Mg.Only a thin diffusion layer consisting mainly of Ag3Al occurred al lhe Al/Ag interface.The tensile lap shear strength first increased,reached its peak value,and then decreased with increasing welding energy.The shear strength achieved in the present study was〜31%higher than that of the joint without interlayer.Interfacial failure occurred at all energy levels,with Ag foil particles or fragments being stuck on both Mg and Al sides due to its intense interaction with Mg and Al via accelerated diffusion during USW.The results obtained pave the way for the challenging dissimilar welding between Mg and Al alloys.