Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferou...Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components(species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total betadiversity and its components in different life forms(i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total betadiversity of larch forests was mainly dependent on the species turnover component. In all life forms,total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China.展开更多
Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integratin...Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.展开更多
The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. T...The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g.m^-2.month ^-1 in June 2004 (simplified expression of g (carbon).m^-2.month^-1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g-m^-2.a^-1 (simplified expression of g (carbon).m^-2.a^-1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD 〈 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD 〉 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol.m^-2.s^-1kPa -1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol.m^-2.s-1.kPa^-1. Under humid conditions (VPD 〈 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.展开更多
Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and ...Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and K was analyzed to study the effect of nutrients variation on yield improvement in the mixed stand. The result showed that: 1) The stand level total soil N concentration and available N in the mixed stand was similar to that in the monoculture stand of ash, but higher than that in monoculture stand of larch. The total N and available N concentration in rhizosphere soil of ash in the mixed stand was similar to that in the monoculture stand of ash, but the available N concentration in rhizosphere of larch in mixed stand was much higher than in its monoculture. 2) The stand level total P, total K concentration in the mixed stand was similar to that in monocul-ture stands of both species, but available P and K was more concentrated in the mixed stand than in the monoculture stands of ash. The rhizosphere available P and K of ash in the mixed stand was 44.1% and 13.5% (for the 9-yr-old stands) and 79.6% and 25.6% (for the 21-yr-old stands) higher than that in its monoculture. The improvement of soil P and K availability in the mixed stand is concluded.展开更多
The roots of 200 one-year-old Changbai Larch (Larix olgensis) seedlings were soaked for 6 hours at the TMS concentrations of 2000, 1000, 500, 250, 125, and 62 μL·L?1. Mean seedling height, root collar diameter, ...The roots of 200 one-year-old Changbai Larch (Larix olgensis) seedlings were soaked for 6 hours at the TMS concentrations of 2000, 1000, 500, 250, 125, and 62 μL·L?1. Mean seedling height, root collar diameter, main root length and number of lateral roots were measured every 15 days during growing season from May 30 to Oct. 20. Experimental results showed that TMS treatments greatly promoted seedling growth and improved seedling quality. The treatment by 500 μL·L?1 TMS produced the best result, for which the mean height, root collar diameter, main root length, and the number of lateral roots of seedlings were increased by 42.5%, 30.7%, 14.0%, and 31.6%, respectively, compared to that of the control seedlings. As to seedling quality, grade-I seedling and grade-II seedlings were fifty-fifty, and no grade-III seedlings was found. The treatment by 500 μL·L?1 TMS resulted in the highest chlorophyll concentration. Keywords Changbai Larch - Larix olgensis - Seedling production - Nanostructured silicon dioxide CLC number S143.8 Document code B Foundation item: This study is supported by Jilin Forestry Group Co.Biography: LIN Baoshan (1955-), male, Associate professor at the college of forestry, Beihua University, Jilin City 132011, Jilin Province, P.R China.Responsible editor: Chai Ruihai.展开更多
The spatial distribution of standing fine roots in tree rows of different species in a 12-year-old mixed stand of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) was studied by soil core sampling in ...The spatial distribution of standing fine roots in tree rows of different species in a 12-year-old mixed stand of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) was studied by soil core sampling in early spring, 2001. It is found that ash and larch differ greatly in their belowground biomass distribution. Ash has much higher fine root biomass density in the soil than larch at stand level (with the max value of 4442.3 vs. 2234.9 gm-3). Both tree species deployed more fine roots in their neighboring zone, suggesting a less intensive competition between roots of the two species. Both fine root biomass density and root length density of ash in the zone between larch tree rows are greater than that of larch in zone between ash tree rows, indicating that ash is more powerful than larch in belowground competition. The spatial distribution feature of roots favors the growth of ash in the mixed stand.展开更多
The larch wood was treated by microwave irradiation under different radiant intensity and treating duration. The microwave-treated wood specimens together with the un-treated for comparison were impregnated by water i...The larch wood was treated by microwave irradiation under different radiant intensity and treating duration. The microwave-treated wood specimens together with the un-treated for comparison were impregnated by water in pressure vessel and then tested for permeability, mechanical properties and microstructure change by SEM to study the modification performance of microwave treatment on larch wood. The results showed that under suitable conditions of microwave treatment the permeability of larch wood was improved without noticeable decreasing of the modulus of rupture (MOR) and the modulus of elasticity (MOE). The radial parenchyma and some pit membrane were ruptured, and tiny cracks were formed in the cell walls. The formation of tiny cracks in the cell walls serves as man-made channels of gas and liquid and this contribute to improve the permeability of the wood.展开更多
Biomass functions were established to estimate above-ground biomass of Siberian larch (Larix sibirica) in the Altai Mountains of Mon- golia. The functions are based on biomass sampling of trees from 18 different sit...Biomass functions were established to estimate above-ground biomass of Siberian larch (Larix sibirica) in the Altai Mountains of Mon- golia. The functions are based on biomass sampling of trees from 18 different sites, which represent the driest locations within the natural range ofL. sibirica. The best performing regression model was found for the equations y = (D2 H)/(a+bD) for stem biomass, y = aDb for branch biomass, and y=aDb Hc for needle biomass, where D is the stem diameter at breast height and H is the tree height. The robustness of the biomass functions is assessed by comparison with equations which had been previously published from a plantation in Iceland. There, y=aDb Hc was found to be the most significant model for stem and total above-ground biomasses. Applying the equations from Iceland for estimating the above-ground biomass of trees from Mongolia resulted in the underesti- mation of the biomass in large-diameter trees and the overestimation of the biomass in thin trees. The underestimation of thick-stemmed trees is probably attributable to the higher wood density, which has to be ex- pected under the ultracontinental climate of Mongolia compared to the euoceanic climate of Iceland. The overestimation of the biomass in trees with low stem diameter is probably due to the high density of young growth in the not systematically managed forests of the Mongolian Altai Mountains, which inhibits branching, whereas the plantations in Iceland are likely to have been planted in lower densities.展开更多
The overall goal of this study was to understand carbon(C) stock dynamics in four different-aged Japanese larch(Larix kaempferi) plantations in Northeast China that were established after clear-cutting old-growth Kore...The overall goal of this study was to understand carbon(C) stock dynamics in four different-aged Japanese larch(Larix kaempferi) plantations in Northeast China that were established after clear-cutting old-growth Korean pine deciduous forests. Four Japanese larch plantations which were at 10, 15, 21, and 35 years old and an old-growth Korean pine deciduous forest which was 300 years old in Northeast China were selected and sampled. We compared the C pools of biomass(tree, shrub and herb), litterfall(LF), and soil organic carbon(SOC) among them. The biomass C stock of larch plantation at 10, 15, 21, and 35 years old was 26.8, 37.9, 63.6, and 83.2 Mg/ha, respectively, while the biomass C stock of the old-growth Korean pine deciduous forest was 175.1 Mg/ha. The SOC stock of these larch plantations was 172.1, 169.7, 140.3, and 136.2 Mg/ha respectively, and SOC stock of 170.4 Mg/ha in the control of old-growth forest. The biomass C stock increased with stand age of larch plantations, whereas SOC stock decreased with age, and C stock of LF did not change significantly(P > 0.05). The increase of biomass C offset the decline of SOC stock with age, making total carbon stock(TCS) of larch plantations stable from stand ages of 10–35 years. The TCS in larch plantations was much smaller than that in the old-growth forest, suggesting that the conversion of old-growth forests to young larch plantations releases substantial C into the atmosphere.展开更多
The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The...The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation.展开更多
In 1991, in Daxingan Mountain, an outbreak of larch caterpillar (Dendrolim us superans Butler) happened on large areas of more than one million hectares, where stands of larch were seriously damaged because needles on...In 1991, in Daxingan Mountain, an outbreak of larch caterpillar (Dendrolim us superans Butler) happened on large areas of more than one million hectares, where stands of larch were seriously damaged because needles on the trees were almost eaten up by the pest. causing enormous economic losses. Analysis of data collected indicated that the main cause of the outbreak of larch caterpillar on large areas was that, after thirty years of exploitation, mature and overmature forests decreased rapidly. middle-aged and young forests incresed in large amount. significant changes occurred in individual ecological conditions of stands, especially those tended. with decreasing canoPy density and better light condition in the forest, and all these were adventageous to the outbreak of the pest. In addition, in recent years, the climatic condition in Daxingan Mountain changed significantly. The yearly average temperature raised gradually and the soil surface temperature in April and October increased year by year, which were advantageous to the outbreak of larch caterpillars. In short. the significant changes in the ecological conditions in Daxingan Mountain provided suitable conditions for the outbreak of the larch caberpill ar, and after several years of increase in population number, the larch caterpillar outbroke into a serious disaster on vast areas. In the paper, composite control strategy was also discussed.展开更多
Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequest...Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.展开更多
Two analytical procedures (Crank's method and Dincer's method) for porous solid materials were reevaluated and used to determine moisture diffusion coefficients and moisture transfer coefficients for larch lumber ...Two analytical procedures (Crank's method and Dincer's method) for porous solid materials were reevaluated and used to determine moisture diffusion coefficients and moisture transfer coefficients for larch lumber subjected to drying. A diffusion-like equation was used to describe drying process data. The lumber was idealized in the modeling as infinite plates. The moisture transport process inside the board was assumed to be one-dimensional. The macroscopic drying kinetics curves of larch timber at particular conditions were determined experimentally. Based on these data, calculation for both the moisture diffusion coefficients and moisture transfer coefficients by the Dincer's analytical procedure were made. The dynamic moisture diffusion coefficients by the traditional Crank's method were calculated. In general, diffusion coefficients calculated by the Dincer's method were all higher than those by Crank's method. These results could be due to the differences between two analytical methods and also different characteristics between solid moisture diffusion process and heat transfer process. Therefore the analysis and solution procedures of moisture diffusion differential equations need to be adapted in the future. With drying temperature's increasing moisture diffusion coefficient (D) and moisture transfer coefficient (k) increases accordingly. Also the relationships between diffusion coefficients and temperature as well as material moisture contents were analyzed by using Arrhenius equation and bound water transport theory.展开更多
Larch caterpillars are widely distributed in the Great Xing’an boreal forests;however,the relationship between caterpillar defoliation dynamics and climatic factors is poorly understood.The aims of this study are to ...Larch caterpillars are widely distributed in the Great Xing’an boreal forests;however,the relationship between caterpillar defoliation dynamics and climatic factors is poorly understood.The aims of this study are to investigate the primary weather conditions that might influence forest defoliation and to identify the most important life stage of the larch caterpillar at which forest defoliation might be mitigated by incorporating more inhibitory influences from climatic factors.The life cycle of the larch caterpillar was partitioned into four stages and multiple linear regression and mixed effect models were combined with a relative weight analysis approach to evaluate the importance and influence of meteorological variables on defoliation dynamics.The results show that warmer temperatures in growing seasons and overwintering periods can increase the defoliation area,while rainy and humid growing seasons decrease the defoliation area.Total precipitation during the early instar larval period had the greatest power to explain the variance in defoliation dynamics and had a very strong inhibitory effect,followed by the accumulative temperatures of the late instar larval period which had a positive impact,and precipitation during the middle instar larval period which had a negative impact.Weather conditions during the early instar larval period had the greatest influence on the area defoliated and accounted for 40%of the explained variance.This study demonstrates that climatic warming and drying will increase the risk of larch caterpillar outbreaks in the Great Xing’an Mountains.展开更多
Background:Recent warming is affecting species composition and species areal distribution of many regions.However,although most treeline studies have estimated the rates of forest expansion into tundra,still little is...Background:Recent warming is affecting species composition and species areal distribution of many regions.However,although most treeline studies have estimated the rates of forest expansion into tundra,still little is known about the long-term dynamic of stand productivity at the forest-tundra intersection.Here,we make use of tree-ring data from 350 larch(Larix sibirica Ledeb.)and spruce(Picea obovata Ledeb.)sampled along the singular altitudinal treeline ecotone at the Polar Urals to assess the dynamic of stand establishment and productivity,and link the results with meteorological observations to identify the main environmental drivers.Results:The analysis of stand instalment indicated that more than 90%of the living trees appeared after 1900.During this period,the stand became denser and moved 50m upward,while in recent decades the trees of both species grew faster.The maximum afforestation occurred in the last decades of the twentieth century,and the large number of encountered saplings indicates that the forest is still expanding.The upward shift coincided with a slight increase of May-August and nearly doubling of September-April precipitation while the increase in growth matched with an early growth season warming(June+0.27°C per decade since 1901).This increase in radial growth combined with the stand densification led to a 6-90 times increase of biomass since 1950.Conclusion:Tree-ring based twentieth century reconstruction at the treeline ecotone shows an ongoing forest densification and expansion accompanied by an increased growth.These changes are driven by climate change mechanism,whereby the leading factors are the significant increase in May-June temperatures and precipitation during the dormant period.Exploring of phytomass accumulation mechanisms within treeline ecotone is valuable for improving our understanding of carbon dynamics and the overall climate balance in current treeline ecosystems and for predicting how these will be altered by global change.展开更多
Soils were collected from.three neighboring forest sites: 36-year-old larch plantation, 11-year-old larch plantation, and natural secondary broad-leaved forest (as control). Soil pH, total C. totaI N, C/N ratio. and ...Soils were collected from.three neighboring forest sites: 36-year-old larch plantation, 11-year-old larch plantation, and natural secondary broad-leaved forest (as control). Soil pH, total C. totaI N, C/N ratio. and available N (NO3-N and NH4-N) were measured. Laboratory incubations of soil samples were conducted during a 50 days period for the measurement of nitrogen mineralization rate and nitrification potenial. The results proved a degeneration in soil nitrogen status with stand age of larch plantations, which implicated one important aspect of soil degradation when natural forest was replaced by coniferous plantations.展开更多
Proanthocyanidins(PAs)are the most broadly distributed secondary metabolites that play important roles in various aspects of plant development and response to biotic and abiotic stresses.In this study,we cloned a R2R3...Proanthocyanidins(PAs)are the most broadly distributed secondary metabolites that play important roles in various aspects of plant development and response to biotic and abiotic stresses.In this study,we cloned a R2R3 MYB gene LoMYB29,which has a full-length coding sequence of 921 bp identified in Larix olgensis.Quantitative real-time reverse transcription polymerase chain reaction analysis indicates that LoMYB29 is expressed under mechanical wounding,high light intensity,and NaCl,PEG6000,Methyl Jasmonate,and abscisic acid treatments.Subcellular localization analysis and yeast twohybrid assay localized LoMYB29 to the nucleus,acting as a transcriptional activator.Staining with 4-dimethylaminocinnamaldehyde showed a darker blue-purple color in LoMYB29-overexpressing Arabidopsis seeds compared to that of wild seeds.LoMYB29-overexpression resulted in a significant increase in leaf PA content.The expression of early flavonoid biosynthesis-related gene CHI and late flavonoid biosynthesis-related genes,including DFR,LDOX,and ANR(PA branch gene),were also activated in transgenic plants overexpressing LoMYB29.The results indicate that LoMYB29 plays a positive role in the regulation of PA biosynthesis by activating the expression of PA biosynthetic genes.展开更多
Background:Larch(Larix Mill.)forests are widely distributed in the upper parts of mountainous areas in China,playing vital roles in constructing mountain landscapes and maintaining mountain environments.Despite their ...Background:Larch(Larix Mill.)forests are widely distributed in the upper parts of mountainous areas in China,playing vital roles in constructing mountain landscapes and maintaining mountain environments.Despite their importance,our knowledges on the large-scale patterns of structure characteristics and the relationships between different structure variables are unclear.In this paper,we investigated 155 plots from 11 natural larch forest types across the country to explore the biogeographic patterns of the structure characteristics and the allometric relationships between different structure variables for Chinese larch forests.Results:The structure characteristics were significantly different among larch forest types.For different larch forest types,the power function fits the relationships between tree height and diameter at breast height(DBH),average DBH and stem density,and taper and stem density well,but with different exponents among larch forest types.The power exponents of the allometric relationships between tree height and DBH for different larch forest types varied from 0.61 to 0.93(mean=0.86)by standard major axis regression(SMA),and from 0.51 to 0.78(mean=0.56)by ordinary least square regression(OLS).The 50%,75%and 95%quantile regression(QR)and OLS indicated that the average DBH and taper of the L.gmelinii forests,L.gmelinii var.principis-rupprechtii forests,and L.sibirica forests were significantly correlated with stem density.Conclusions:The relationship between tree height and DBH showed a power function relationship for all larch forest types in China,but with different exponents.Overall,stem density was negatively correlated with average DBH and taper.The Sect.Larix forests exhibited stand density effect.Our findings provide an important basis for recognizing the biogeographic patterns of structure factors and for the management of larch forests in China.展开更多
Allelopathic effect of larch (Larix gmelini ) on the ash growth (Fraximus mandshurica) was studied in artificial cultivation tests. The results revealed that the larch root secretion obviously stimulated the ash growt...Allelopathic effect of larch (Larix gmelini ) on the ash growth (Fraximus mandshurica) was studied in artificial cultivation tests. The results revealed that the larch root secretion obviously stimulated the ash growth. In order to determine the main stimulation allelochemicals, the chemical composition was analyzed. By contrasting the contents of carbohydrate and aminoacid in root secretion of larch and ash, it was concluded that the carbohydrate and aminoacid were not important stimulation allelochemicals. The organic acid and other components in root secration of larch and ash were analyzed by GC and GC-MS analysis. The sand culture tests were carried out ed selected model compounds. The results showed that benzeneacetic acid, benzenepropionic acid and phenolic acids in root secretion of larch were the main stimulation allelochemicals.展开更多
基金supported by the Major Program for Basic Research Project of Yunnan Province (No. 202101BC070002)the National Natural Science Foundation of China (No. 32201426, No. 31988102)the National Science and Technology Basic Project of China (No. 2015FY210200)
文摘Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components(species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total betadiversity and its components in different life forms(i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total betadiversity of larch forests was mainly dependent on the species turnover component. In all life forms,total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China.
基金funded by National Key Research and Development Program(2023YFD220080430&2017YFD0600404)。
文摘Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.
基金the Global Environment Research Fund,Ministry of the Environment,Japan (S-1: Integrated Study for Terrestrial Carbon Management of Asia in the 21st Century Based on Scientific Advancements)the Chinese Academy of Sciences (07W70000SZ)+1 种基金the National Natural Science Foundation of China (30300271)the State Key Basic Research and Development Plan of China (2004CCA02700)
文摘The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g.m^-2.month ^-1 in June 2004 (simplified expression of g (carbon).m^-2.month^-1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g-m^-2.a^-1 (simplified expression of g (carbon).m^-2.a^-1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD 〈 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD 〉 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol.m^-2.s^-1kPa -1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol.m^-2.s-1.kPa^-1. Under humid conditions (VPD 〈 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.
基金This study was supported by National Natural Science Foundation of China (Grant No. 30130160) and the Quick Response of Basic Research Supporting Program (Grant No.2102)
文摘Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and K was analyzed to study the effect of nutrients variation on yield improvement in the mixed stand. The result showed that: 1) The stand level total soil N concentration and available N in the mixed stand was similar to that in the monoculture stand of ash, but higher than that in monoculture stand of larch. The total N and available N concentration in rhizosphere soil of ash in the mixed stand was similar to that in the monoculture stand of ash, but the available N concentration in rhizosphere of larch in mixed stand was much higher than in its monoculture. 2) The stand level total P, total K concentration in the mixed stand was similar to that in monocul-ture stands of both species, but available P and K was more concentrated in the mixed stand than in the monoculture stands of ash. The rhizosphere available P and K of ash in the mixed stand was 44.1% and 13.5% (for the 9-yr-old stands) and 79.6% and 25.6% (for the 21-yr-old stands) higher than that in its monoculture. The improvement of soil P and K availability in the mixed stand is concluded.
基金This study is supported by Jilin Forestry Group Co.
文摘The roots of 200 one-year-old Changbai Larch (Larix olgensis) seedlings were soaked for 6 hours at the TMS concentrations of 2000, 1000, 500, 250, 125, and 62 μL·L?1. Mean seedling height, root collar diameter, main root length and number of lateral roots were measured every 15 days during growing season from May 30 to Oct. 20. Experimental results showed that TMS treatments greatly promoted seedling growth and improved seedling quality. The treatment by 500 μL·L?1 TMS produced the best result, for which the mean height, root collar diameter, main root length, and the number of lateral roots of seedlings were increased by 42.5%, 30.7%, 14.0%, and 31.6%, respectively, compared to that of the control seedlings. As to seedling quality, grade-I seedling and grade-II seedlings were fifty-fifty, and no grade-III seedlings was found. The treatment by 500 μL·L?1 TMS resulted in the highest chlorophyll concentration. Keywords Changbai Larch - Larix olgensis - Seedling production - Nanostructured silicon dioxide CLC number S143.8 Document code B Foundation item: This study is supported by Jilin Forestry Group Co.Biography: LIN Baoshan (1955-), male, Associate professor at the college of forestry, Beihua University, Jilin City 132011, Jilin Province, P.R China.Responsible editor: Chai Ruihai.
基金This study was supported by National Natural Science Foundation of China (Grant No. 30130160) and the Quick Response of Basic Research Supporting Program (Grant No.2102)
文摘The spatial distribution of standing fine roots in tree rows of different species in a 12-year-old mixed stand of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) was studied by soil core sampling in early spring, 2001. It is found that ash and larch differ greatly in their belowground biomass distribution. Ash has much higher fine root biomass density in the soil than larch at stand level (with the max value of 4442.3 vs. 2234.9 gm-3). Both tree species deployed more fine roots in their neighboring zone, suggesting a less intensive competition between roots of the two species. Both fine root biomass density and root length density of ash in the zone between larch tree rows are greater than that of larch in zone between ash tree rows, indicating that ash is more powerful than larch in belowground competition. The spatial distribution feature of roots favors the growth of ash in the mixed stand.
基金This paper was supported by Science Fund for Distin-guished Young Scholars, Heilongjiang Province (No. JC04-01)
文摘The larch wood was treated by microwave irradiation under different radiant intensity and treating duration. The microwave-treated wood specimens together with the un-treated for comparison were impregnated by water in pressure vessel and then tested for permeability, mechanical properties and microstructure change by SEM to study the modification performance of microwave treatment on larch wood. The results showed that under suitable conditions of microwave treatment the permeability of larch wood was improved without noticeable decreasing of the modulus of rupture (MOR) and the modulus of elasticity (MOE). The radial parenchyma and some pit membrane were ruptured, and tiny cracks were formed in the cell walls. The formation of tiny cracks in the cell walls serves as man-made channels of gas and liquid and this contribute to improve the permeability of the wood.
基金funded by the Asian Research Center (ARC) based in the National University of Mongolia (Ulan Bator) The work was done in association with the project "Forest regeneration and biodiversity at the forest-steppe border of the Altai and Khangai Mountains under contrasting developments of livestock numbers in Kazakhstan and Mongolia" funded by the Volkswagen Foundation
文摘Biomass functions were established to estimate above-ground biomass of Siberian larch (Larix sibirica) in the Altai Mountains of Mon- golia. The functions are based on biomass sampling of trees from 18 different sites, which represent the driest locations within the natural range ofL. sibirica. The best performing regression model was found for the equations y = (D2 H)/(a+bD) for stem biomass, y = aDb for branch biomass, and y=aDb Hc for needle biomass, where D is the stem diameter at breast height and H is the tree height. The robustness of the biomass functions is assessed by comparison with equations which had been previously published from a plantation in Iceland. There, y=aDb Hc was found to be the most significant model for stem and total above-ground biomasses. Applying the equations from Iceland for estimating the above-ground biomass of trees from Mongolia resulted in the underesti- mation of the biomass in large-diameter trees and the overestimation of the biomass in thin trees. The underestimation of thick-stemmed trees is probably attributable to the higher wood density, which has to be ex- pected under the ultracontinental climate of Mongolia compared to the euoceanic climate of Iceland. The overestimation of the biomass in trees with low stem diameter is probably due to the high density of young growth in the not systematically managed forests of the Mongolian Altai Mountains, which inhibits branching, whereas the plantations in Iceland are likely to have been planted in lower densities.
基金National Key Technologies Research and Development Program of China(No.2012BAD22B04)National Science Foundation Grant(No.DBI-0821649)+2 种基金Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-Q1-0501)Research Foundation of Science and Technology Department of Henan Province(No.142106000090)High Level Talent Project of Pingdingshan University(No.2011009/G)
文摘The overall goal of this study was to understand carbon(C) stock dynamics in four different-aged Japanese larch(Larix kaempferi) plantations in Northeast China that were established after clear-cutting old-growth Korean pine deciduous forests. Four Japanese larch plantations which were at 10, 15, 21, and 35 years old and an old-growth Korean pine deciduous forest which was 300 years old in Northeast China were selected and sampled. We compared the C pools of biomass(tree, shrub and herb), litterfall(LF), and soil organic carbon(SOC) among them. The biomass C stock of larch plantation at 10, 15, 21, and 35 years old was 26.8, 37.9, 63.6, and 83.2 Mg/ha, respectively, while the biomass C stock of the old-growth Korean pine deciduous forest was 175.1 Mg/ha. The SOC stock of these larch plantations was 172.1, 169.7, 140.3, and 136.2 Mg/ha respectively, and SOC stock of 170.4 Mg/ha in the control of old-growth forest. The biomass C stock increased with stand age of larch plantations, whereas SOC stock decreased with age, and C stock of LF did not change significantly(P > 0.05). The increase of biomass C offset the decline of SOC stock with age, making total carbon stock(TCS) of larch plantations stable from stand ages of 10–35 years. The TCS in larch plantations was much smaller than that in the old-growth forest, suggesting that the conversion of old-growth forests to young larch plantations releases substantial C into the atmosphere.
文摘The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation.
文摘In 1991, in Daxingan Mountain, an outbreak of larch caterpillar (Dendrolim us superans Butler) happened on large areas of more than one million hectares, where stands of larch were seriously damaged because needles on the trees were almost eaten up by the pest. causing enormous economic losses. Analysis of data collected indicated that the main cause of the outbreak of larch caterpillar on large areas was that, after thirty years of exploitation, mature and overmature forests decreased rapidly. middle-aged and young forests incresed in large amount. significant changes occurred in individual ecological conditions of stands, especially those tended. with decreasing canoPy density and better light condition in the forest, and all these were adventageous to the outbreak of the pest. In addition, in recent years, the climatic condition in Daxingan Mountain changed significantly. The yearly average temperature raised gradually and the soil surface temperature in April and October increased year by year, which were advantageous to the outbreak of larch caterpillars. In short. the significant changes in the ecological conditions in Daxingan Mountain provided suitable conditions for the outbreak of the larch caberpill ar, and after several years of increase in population number, the larch caterpillar outbroke into a serious disaster on vast areas. In the paper, composite control strategy was also discussed.
基金supported by the National Basic Research Program of China(2012CB416903)the National Natural Science Foundation of China(31570600)
文摘Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.
文摘Two analytical procedures (Crank's method and Dincer's method) for porous solid materials were reevaluated and used to determine moisture diffusion coefficients and moisture transfer coefficients for larch lumber subjected to drying. A diffusion-like equation was used to describe drying process data. The lumber was idealized in the modeling as infinite plates. The moisture transport process inside the board was assumed to be one-dimensional. The macroscopic drying kinetics curves of larch timber at particular conditions were determined experimentally. Based on these data, calculation for both the moisture diffusion coefficients and moisture transfer coefficients by the Dincer's analytical procedure were made. The dynamic moisture diffusion coefficients by the traditional Crank's method were calculated. In general, diffusion coefficients calculated by the Dincer's method were all higher than those by Crank's method. These results could be due to the differences between two analytical methods and also different characteristics between solid moisture diffusion process and heat transfer process. Therefore the analysis and solution procedures of moisture diffusion differential equations need to be adapted in the future. With drying temperature's increasing moisture diffusion coefficient (D) and moisture transfer coefficient (k) increases accordingly. Also the relationships between diffusion coefficients and temperature as well as material moisture contents were analyzed by using Arrhenius equation and bound water transport theory.
基金The work was supported by the National Key R&D Program of China(2017YFA0604403).
文摘Larch caterpillars are widely distributed in the Great Xing’an boreal forests;however,the relationship between caterpillar defoliation dynamics and climatic factors is poorly understood.The aims of this study are to investigate the primary weather conditions that might influence forest defoliation and to identify the most important life stage of the larch caterpillar at which forest defoliation might be mitigated by incorporating more inhibitory influences from climatic factors.The life cycle of the larch caterpillar was partitioned into four stages and multiple linear regression and mixed effect models were combined with a relative weight analysis approach to evaluate the importance and influence of meteorological variables on defoliation dynamics.The results show that warmer temperatures in growing seasons and overwintering periods can increase the defoliation area,while rainy and humid growing seasons decrease the defoliation area.Total precipitation during the early instar larval period had the greatest power to explain the variance in defoliation dynamics and had a very strong inhibitory effect,followed by the accumulative temperatures of the late instar larval period which had a positive impact,and precipitation during the middle instar larval period which had a negative impact.Weather conditions during the early instar larval period had the greatest influence on the area defoliated and accounted for 40%of the explained variance.This study demonstrates that climatic warming and drying will increase the risk of larch caterpillar outbreaks in the Great Xing’an Mountains.
基金N.D.,V.K.,A.G.,and A.G.were supported by the Russian Science Foundation(Grant No.17-14-01112)V.M.was supported by the Russian Foundation of Basic Research(Grant No.19-05-00756)Data collection was partly performed within the frameworks of a state contract with the Institute of Plant and Animal Ecology,Ural Branch,Russian Academy of Sciences.
文摘Background:Recent warming is affecting species composition and species areal distribution of many regions.However,although most treeline studies have estimated the rates of forest expansion into tundra,still little is known about the long-term dynamic of stand productivity at the forest-tundra intersection.Here,we make use of tree-ring data from 350 larch(Larix sibirica Ledeb.)and spruce(Picea obovata Ledeb.)sampled along the singular altitudinal treeline ecotone at the Polar Urals to assess the dynamic of stand establishment and productivity,and link the results with meteorological observations to identify the main environmental drivers.Results:The analysis of stand instalment indicated that more than 90%of the living trees appeared after 1900.During this period,the stand became denser and moved 50m upward,while in recent decades the trees of both species grew faster.The maximum afforestation occurred in the last decades of the twentieth century,and the large number of encountered saplings indicates that the forest is still expanding.The upward shift coincided with a slight increase of May-August and nearly doubling of September-April precipitation while the increase in growth matched with an early growth season warming(June+0.27°C per decade since 1901).This increase in radial growth combined with the stand densification led to a 6-90 times increase of biomass since 1950.Conclusion:Tree-ring based twentieth century reconstruction at the treeline ecotone shows an ongoing forest densification and expansion accompanied by an increased growth.These changes are driven by climate change mechanism,whereby the leading factors are the significant increase in May-June temperatures and precipitation during the dormant period.Exploring of phytomass accumulation mechanisms within treeline ecotone is valuable for improving our understanding of carbon dynamics and the overall climate balance in current treeline ecosystems and for predicting how these will be altered by global change.
文摘Soils were collected from.three neighboring forest sites: 36-year-old larch plantation, 11-year-old larch plantation, and natural secondary broad-leaved forest (as control). Soil pH, total C. totaI N, C/N ratio. and available N (NO3-N and NH4-N) were measured. Laboratory incubations of soil samples were conducted during a 50 days period for the measurement of nitrogen mineralization rate and nitrification potenial. The results proved a degeneration in soil nitrogen status with stand age of larch plantations, which implicated one important aspect of soil degradation when natural forest was replaced by coniferous plantations.
基金supported by the Genetically Modified Organisms Breeding Major Projects of China(2018ZX08022001)111 Project(B16010)National High Technology Research and Development Program of China(863 Program,2013AA102704)
文摘Proanthocyanidins(PAs)are the most broadly distributed secondary metabolites that play important roles in various aspects of plant development and response to biotic and abiotic stresses.In this study,we cloned a R2R3 MYB gene LoMYB29,which has a full-length coding sequence of 921 bp identified in Larix olgensis.Quantitative real-time reverse transcription polymerase chain reaction analysis indicates that LoMYB29 is expressed under mechanical wounding,high light intensity,and NaCl,PEG6000,Methyl Jasmonate,and abscisic acid treatments.Subcellular localization analysis and yeast twohybrid assay localized LoMYB29 to the nucleus,acting as a transcriptional activator.Staining with 4-dimethylaminocinnamaldehyde showed a darker blue-purple color in LoMYB29-overexpressing Arabidopsis seeds compared to that of wild seeds.LoMYB29-overexpression resulted in a significant increase in leaf PA content.The expression of early flavonoid biosynthesis-related gene CHI and late flavonoid biosynthesis-related genes,including DFR,LDOX,and ANR(PA branch gene),were also activated in transgenic plants overexpressing LoMYB29.The results indicate that LoMYB29 plays a positive role in the regulation of PA biosynthesis by activating the expression of PA biosynthetic genes.
基金the National Science and Technology Basic Project of China(No.2015FY210200)National Natural Science Foundation(No.31988102).
文摘Background:Larch(Larix Mill.)forests are widely distributed in the upper parts of mountainous areas in China,playing vital roles in constructing mountain landscapes and maintaining mountain environments.Despite their importance,our knowledges on the large-scale patterns of structure characteristics and the relationships between different structure variables are unclear.In this paper,we investigated 155 plots from 11 natural larch forest types across the country to explore the biogeographic patterns of the structure characteristics and the allometric relationships between different structure variables for Chinese larch forests.Results:The structure characteristics were significantly different among larch forest types.For different larch forest types,the power function fits the relationships between tree height and diameter at breast height(DBH),average DBH and stem density,and taper and stem density well,but with different exponents among larch forest types.The power exponents of the allometric relationships between tree height and DBH for different larch forest types varied from 0.61 to 0.93(mean=0.86)by standard major axis regression(SMA),and from 0.51 to 0.78(mean=0.56)by ordinary least square regression(OLS).The 50%,75%and 95%quantile regression(QR)and OLS indicated that the average DBH and taper of the L.gmelinii forests,L.gmelinii var.principis-rupprechtii forests,and L.sibirica forests were significantly correlated with stem density.Conclusions:The relationship between tree height and DBH showed a power function relationship for all larch forest types in China,but with different exponents.Overall,stem density was negatively correlated with average DBH and taper.The Sect.Larix forests exhibited stand density effect.Our findings provide an important basis for recognizing the biogeographic patterns of structure factors and for the management of larch forests in China.
文摘Allelopathic effect of larch (Larix gmelini ) on the ash growth (Fraximus mandshurica) was studied in artificial cultivation tests. The results revealed that the larch root secretion obviously stimulated the ash growth. In order to determine the main stimulation allelochemicals, the chemical composition was analyzed. By contrasting the contents of carbohydrate and aminoacid in root secretion of larch and ash, it was concluded that the carbohydrate and aminoacid were not important stimulation allelochemicals. The organic acid and other components in root secration of larch and ash were analyzed by GC and GC-MS analysis. The sand culture tests were carried out ed selected model compounds. The results showed that benzeneacetic acid, benzenepropionic acid and phenolic acids in root secretion of larch were the main stimulation allelochemicals.