期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical method of static aeroelastic correction and jig-shape design for large airliners 被引量:4
1
作者 HUANG Wei LU ZhiLiang +2 位作者 GUO TongQing XUE Fei ZHANG Miao 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第9期2447-2452,共6页
In this paper,a coupled CFD-CSD method based on N-S equations is described for static aeroelastic correction and jig-shape design of large airliners.The wing structural flexibility matrix is analyzed by a finite eleme... In this paper,a coupled CFD-CSD method based on N-S equations is described for static aeroelastic correction and jig-shape design of large airliners.The wing structural flexibility matrix is analyzed by a finite element method with a double-beam model.The viscous multi-block structured grid is used in aerodynamic calculations.Flexibility matrix interpolation is fulfilled by use of a surface spline method.The load distributions on wing surface are evaluated by solving N-S equations with a parallel algorithm.A flexibility approach is employed to calculate the structural deformations.By successive iterations between steady aerodynamic forces and structural deformations,a coupled CFD-CSD method is achieved for the static aeroelastic correction and jig-shape design of a large airliner.The present method is applied to the static aeroelastic analysis and jig-shape design for a typical large airliner with engine nacelle and winglet.The numerical results indicate that calculations of static aeroelastic correction should employ tightly coupled CFD-CSD iterations,and that on a given cruise shape only one round of iterative design is needed to obtain the jig-shape meeting design requirements. 展开更多
关键词 N-S equations large airliner static aeroelasticity flexibility matrix jig-shape
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部