期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Discovery and inspiration of large-and medium-sized glutenite-rich oil and gas fields in the eastern South China Sea:An example from Paleogene Enping Formation in Huizhou 26 subsag,Pearl River Mouth Basin 被引量:1
1
作者 XU Changgui GAO Yangdong +4 位作者 LIU Jun PENG Guangrong LIU Pei XIONG Wanlin SONG Penglin 《Petroleum Exploration and Development》 SCIE 2024年第1期15-30,共16页
Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ... Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration. 展开更多
关键词 Pearl River Mouth Basin Huizhou Sag Huizhou 26 subsag PALEOGENE Enping Formation GLUTENITE large-and medium-sized oil and gas field
下载PDF
Characteristics of carbon isotopic composition of alkane gas in large gas fields in China
2
作者 DAI Jinxing NI Yunyan +4 位作者 GONG Deyu HUANG Shipeng LIU Quanyou HONG Feng ZHANG Yanling 《Petroleum Exploration and Development》 SCIE 2024年第2期251-261,共11页
Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output t... Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted. 展开更多
关键词 China large gas field bacterial gas oil-related gas coal-derived gas abiogenic gas alkane gas carbon isotopic composition δ^(13)C_(1)chart
下载PDF
Two highly efficient accumulation models of large gas fields in China 被引量:2
3
作者 Wang Hongjun Bian Congsheng +2 位作者 Liu Guangdi Sun Mingliang Li Yongxin 《Petroleum Science》 SCIE CAS CSCD 2014年第1期28-38,共11页
Based on reserve abundance,large gas fields in China can be divided into two types:type one of high abundance large gas fields,dominated by structural gas reservoirs; type two of low abundance large gas fields,domina... Based on reserve abundance,large gas fields in China can be divided into two types:type one of high abundance large gas fields,dominated by structural gas reservoirs; type two of low abundance large gas fields,dominated by stratigraphic and lithologic gas reservoirs.The formation of these two types of large gas fields is related to the highly efficient accumulation of natural gas.The accumulation of high abundance gas fields is dependent on the rapid maturation of the source kitchen and huge residual pressure difference between the gas source kitchen and reservoir,which is the strong driving force for natural gas migration to traps.Whereas the accumulation of low abundance gas fields is more complicated,involving both volume flow charge during the burial stage and diffusion flow charge during the uplift stage,which results in large area accumulation and preservation of natural gas in low porosity and low permeability reservoirs.This conclusion should assist gas exploration in different geological settings. 展开更多
关键词 Natural gas gas source kitchen highly efficient accumulation large gas field reserve abundance resource potential
下载PDF
Formation of overpressure system and its relationship with the distribution of large gas fields in typical foreland basins in central and western China 被引量:1
4
作者 LI Wei CHEN Zhuxin +3 位作者 HUANG Pinghui YU Zhichao MIN Lei LU Xuesong 《Petroleum Exploration and Development》 CSCD 2021年第3期625-640,共16页
Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the character... Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the characteristics and formation mechanisms of formation fluid overpressure systems in different foreland basins and the relationship between overpressure systems and large-scale gas accumulation are discussed.(1) The formation mechanisms of formation overpressure in different foreland basins are different. The formation mechanism of overpressure in the Kuqa foreland basin is mainly the overpressure sealing of plastic salt gypsum layer and hydrocarbon generation pressurization in deep–ultra-deep layers, that in the southern Junggar foreland basin is mainly hydrocarbon generation pressurization and under-compaction sealing, and that in the western Sichuan foreland basin is mainly hydrocarbon generation pressurization and paleo-fluid overpressure residual.(2) There are three common characteristics in foreland basins, i.e. superimposed development of multi-type overpressure and multi-layer overpressure, strong–extremely strong overpressure developed in a closed foreland thrust belt, and strong–extremely strong overpressure developed in a deep foreland uplift area.(3) There are four regional overpressure sealing and storage mechanisms, which play an important role in controlling large gas fields, such as the overpressure of plastic salt gypsum layer, the overpressure formed by hydrocarbon generation pressurization, the residual overpressure after Himalayan uplift and denudation, and the under-compaction overpressure.(4) Regional overpressure is an important guarantee for forming large gas fields, the sufficient gas source, large-scale reservoir and trap development in overpressure system are the basic conditions for forming large gas fields, and the overpressure system is conducive to forming deep to ultra-deep large gas fields. 展开更多
关键词 central and western China foreland basin overpressure system large gas field hydrocarbon generation pressurization under-compaction salt gypsum layer overpressure sealing overpressure residual
下载PDF
North slope transition zone of Songnan-Baodao sag in Qiongdongnan Basin and its control on medium and large gas fields,South China Sea
5
作者 XU Changgui YOU Li 《Petroleum Exploration and Development》 CSCD 2022年第6期1229-1242,共14页
Based on analysis of newly collected 3D seismic and drilled well data,the geological structure and fault system of Baodao sag have been systematically examined to figure out characteristics of the transition fault ter... Based on analysis of newly collected 3D seismic and drilled well data,the geological structure and fault system of Baodao sag have been systematically examined to figure out characteristics of the transition fault terrace belt and its control on the formation of natural gas reservoirs.The research results show that the Baodao sag has the northern fault terrace belt,central depression belt and southern slope belt developed,among them,the northern fault terrace belt consists of multiple transition fault terrace belts such as Baodao B,A and C from west to east which control the source rocks,traps,reservoirs,oil and gas migration and hydrocarbon enrichment in the Baodao sag.The activity of the main fault of the transition belt in the sedimentary period of Yacheng Formation in the Early Oligocene controlled the hydrocarbon generation kitchen and hydrocarbon generation potential.From west to east,getting closer to the provenance,the transition belt increased in activity strength,thickness of source rock and scale of delta,and had multiple hydrocarbon generation depressions developed.The main fault had local compression under the background of tension and torsion,giving rise to composite traps under the background of large nose structure,and the Baodao A and Baodao C traps to the east are larger than Baodao B trap.Multiple fault terraces controlled the material source input from the uplift area to form large delta sand bodies,and the synthetic transition belt of the west and middle sections and the gentle slope of the east section of the F12 fault in the Baodao A transition belt controlled the input of two major material sources,giving rise to a number of delta lobes in the west and east branches.The large structural ridge formed under the control of the main fault close to the hydrocarbon generation center allows efficient migration and accumulation of oil and gas.The combination mode and active time of the main faults matched well with the natural gas charging period,resulting in the hydrocarbon gas enrichment.Baodao A transition belt is adjacent to Baodao 27,25 and 21 lows,where large braided river delta deposits supplied by Shenhu uplift provenance develop,and it is characterized by large structural ridges allowing high efficient hydrocarbon accumulation,parallel combination of main faults and early cessation of faulting activity,so it is a favorable area for hydrocarbon gas accumulation.Thick high-quality gas reservoirs have been revealed through drilling,leading to the discovery of the first large-scale gas field in Baodo 21-1 of Baodao sag.This discovery also confirms that the north transition zone of Songnan-Baodao sag has good reservoir forming conditions,and the transition fault terrace belt has great exploration potential eastward. 展开更多
关键词 Qiongdongnan Basin Songnan-Baodao sag fault transition zone PaleogeneBaodo 21-1 medium and large gas fields large structural ridge composite trap hydrocarbon gas
下载PDF
Efficient development strategies for large ultra-deep structural gas fields in China
6
作者 LI Xizhe GUO Zhenhua +7 位作者 HU Yong LUO Ruilan SU Yunhe SUN Hedong LIU Xiaohua WAN Yujin ZHANG Yongzhong LI Lei 《Petroleum Exploration and Development》 2018年第1期118-126,共9页
Through analyzing the development of large ultra-deep structural gas fields in China,strategies for the efficient development of such gas fields are proposed based on their geological characteristics and production pe... Through analyzing the development of large ultra-deep structural gas fields in China,strategies for the efficient development of such gas fields are proposed based on their geological characteristics and production performance.According to matrix properties,fracture development degree and configuration between matrix and fractures,the reservoirs are classified into three types:single porosity single permeability system,dual porosity dual permeability system,and dual porosity single permeability system.These three types of gas reservoirs show remarkable differences in different scales of permeability,the ratio of dynamic reserves to volumetric reserves and water invasion risk.It is pointed out that the key factors affecting development efficiency of these gas fields are determination of production scale and rapid identification of water invasion.Figuring out the characteristics of the gas fields and working out pertinent technical policies are the keys to achieve efficient development.The specific strategies include reinforcing early production appraisal before full scale production by deploying high precision development seismic survey,deploying development appraisal wells in batches and scale production test to get a clear understanding on the structure,reservoir type,distribution pattern of gas and water,and recoverable reserves,controlling production construction pace to ensure enough evaluation time and accurate evaluation results in the early stage,in line with the development program made according to the recoverable reserves,working out proper development strategies,optimizing pattern and proration of wells based on water invasion risk and gas supply capacity of matrix,and reinforcing research and development of key technologies. 展开更多
关键词 ultra-deep formation large STRUCTURAL gas field gas RESERVOIR characteristics RESERVOIR efficient development water invasion risk development strategies
下载PDF
Correlation between per-well average dynamic reserves and initial absolute open flow potential(AOFP) for large gas fields in China and its application
7
作者 LI Xizhe LIU Xiaohua +6 位作者 SU Yunhe WU Guoming LIU Huaxun LU Linlin WAN Yujin GUO Zhenhua SHI Shi 《Petroleum Exploration and Development》 2018年第6期1088-1093,共6页
Based on performance data of over 600 wells in 32 large gas fields of different types in China, the correlation is established between per-well average dynamic reserves( G) and average initial absolute open flow poten... Based on performance data of over 600 wells in 32 large gas fields of different types in China, the correlation is established between per-well average dynamic reserves( G) and average initial absolute open flow potential(IAOFq) of each field, and its connotation and applicability are further discussed through theoretical deduction. In log-log plot, G vs. IAOFq exhibit highly dependent linear trend, which implicates the compatibility between G and IAOFq attained through development optimization to reach the balance among annual flow capacity, maximum profits and certain production plateau, that is to match productivity with rate maintenance capacity. The correlation can be used as analogue in new gas field development planning to evaluate the minimum dynamic reserves which meet the requirement of stable and profitable production, and facilitate well pattern arrangement. It can also serve as criteria to appraise the effectiveness and infill drilling potential of well patterns for developed gas fields. 展开更多
关键词 large gas fields in China INITIAL AOFP dynamic RESERVES type curve INFILL DRILLING POTENTIAL
下载PDF
Discovery and geological knowledge of the large deep coal-formed Qingyang Gas Field, Ordos Basin, NW China
8
作者 FU Jinhua WEI Xinshan +6 位作者 LUO Shunshe ZUO Zhifeng ZHOU Hu LIU Baoxian KONG Qingfen ZHAN Sha NAN Junxiang 《Petroleum Exploration and Development》 2019年第6期1111-1126,共16页
After 50 years of oil and gas exploration in Longdong area of southwest Ordos Basin,NW China,a deep coal-formed gas field was discovered for the first time in Qingyang area.Through observation of field outcrops and co... After 50 years of oil and gas exploration in Longdong area of southwest Ordos Basin,NW China,a deep coal-formed gas field was discovered for the first time in Qingyang area.Through observation of field outcrops and core,analysis of common,cast and cathode thin sections,Ro and other geochemistry indexes,carbon isotope,electron microscope and other supporting tests and analyses,the hydrocarbon generation,reserves formation and reservoir formation characteristics of gas reservoirs at different buried depths in Yishaan slope were examined and compared.The deep gas reservoir has an average buried depth of more than 4200 m,and the main gas-bearing formation is the Member 1 of Lower Permian Shanxi Formation,which is characterized by low porosity,low permeability,low pressure and low abundance.It is believed that hydrocarbon generation in thin seam coal source rocks with high thermal evolution can form large gas fields,high-quality sandstone reservoirs with dissolved pores,intergranular pores and intercrystalline pores can still develop in late diagenetic stage under deep burial depth and high thermal evolution,and fractures improve the permeability of reservoirs.High drying coefficient of natural gas and negative carbon isotope series are typical geochemical characteristics of deep coal-formed gas.The integrated exploration and development method has been innovated,and the economic and effective development mode of gas fields of"dissecting sand body by framework vertical wells,centralized development by horizontal wells"has been formed.The discovery and successful exploration of the large gas field has provided geological basis and technical support for the construction of natural gas fields of 100 billion cubic meter scale in the southwest of the basin,and has important guidance for exploration of coal-derived gas with deep buried depth and high thermal evolution widely distributed in China. 展开更多
关键词 Ordos Basin Upper Paleozoic Lower Permian coal-formed gas DEEP formation high thermal evolution Qingyang large gas field
下载PDF
LARGE GAS FIELD FOUND IN HUTUBI
9
《China Oil & Gas》 CAS 1998年第1期31-31,共1页
关键词 gas large gas field FOUND IN HUTUBI
下载PDF
Breakthrough Made in Ordos Gas Exploration──Reserves discovered initially forming a large gas field
10
《China Oil & Gas》 CAS 2000年第4期26-27,共2页
关键词 Breakthrough Made in Ordos gas Exploration Reserves discovered initially forming a large gas field
下载PDF
Natural gas origins of large and medium-scale gas fields in China sedimentary basins 被引量:21
11
作者 ZHANG ShuiChang &ZHU GuangYou Research Center of Research Institutes of PetroChina Exploration and Development,Beijing 100083,China 《Science China Earth Sciences》 SCIE EI CAS 2008年第S1期1-13,共13页
China sedimentary basins present abundant natural gas resource thanks to its unique geological settings.Marine highly-matured hydrocarbon source rocks,widespread coal-measure strata and low temperature Quaternary sali... China sedimentary basins present abundant natural gas resource thanks to its unique geological settings.Marine highly-matured hydrocarbon source rocks,widespread coal-measure strata and low temperature Quaternary saline strata,etc.,indicate the wide foreground of China natural gas resources. Up to now,most of the petroliferous basins have been discovered to have wholesale natural gas accumulation from Precambrian,Paleozoic,Mesozoic to Cenozoic in the east,the central,the west and the coast of China.These large and medium-scale gas reservoirs are mainly composed of hydrocarbon gas with big dry coefficient,tiny non-hydrocarbon,wide carbon isotope distribution and varying origin types,the hydrocarbon gas includes coal-formed gas,oil-formed gas,biogenic gas and inorganic gas, etc.Coal-formed gas is the main type of China natural gas resources,in particular several explored large-scale gas fields(>100 billion cubic meter)of Kela 2,Sulige and Daniudi,etc.,they all belong to coal-formed gas fields or the gas fields consisting mostly of coal-formed gas.Oil-formed gas is also abundant in China marine basins,for example marine natural gas of Sichuan Basin generated from crude oil cracking gas.Primary and secondary biogenic gas fields were discovered respectively in the Qaidam Basin and Western Slope of Songliao Basin.In addition,inorganic gases are mainly distributed in the eastern China,in particular the Songliao Basin with abundant carbon dioxide accumulation,indicating that the eastern China present large exploration potential of inorganic gas. 展开更多
关键词 NATURAL gas ORIGIN SEDIMENTARY BASIN large and medium-scale gas field
原文传递
Technological progress and development directions of PetroChina overseas oil and gas field production
12
作者 MU Longxin CHEN Yaqiang +1 位作者 XU Anzhu WANG Ruifeng 《Petroleum Exploration and Development》 2020年第1期124-133,共10页
This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technol... This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly. 展开更多
关键词 OVERSEAS OIL and gas field PRODUCTION sandstone OILfield large carbonate OILfield unconventional OIL and gas field marine deep-water OIL and gas technological progress development direction
下载PDF
Geological constraints of giant and medium-sized gas fields in Kuqa Depression 被引量:20
13
作者 JIA Chengzao GU Jiayu ZHANG Guangya 《Chinese Science Bulletin》 SCIE EI CAS 2002年第S1期47-54,共8页
There is a gas-rich and well-charged petroleumsystem in the Kuqa Depression where Triassic and Jurassicsource rocks play important roles. Distributed in an area ofmore than 10000 km and with a thickness of up to 1000 ... There is a gas-rich and well-charged petroleumsystem in the Kuqa Depression where Triassic and Jurassicsource rocks play important roles. Distributed in an area ofmore than 10000 km and with a thickness of up to 1000 m,they are composed of dark mudstones, carbonaceous mud-stones and coal seams containing 6%, 40% and 90% of TOC,respectively, and are mainly the humic organic matter. Ashigh-quality regional cap rocks, the Neogene and Eogenegypsum rocks and gypseous mudstones matched well withthe underlying Neogene and Cretaceous-Eogene sandstones.They have formed the most favorable reservoir-seal assem-blages in the Kuqa Depression. Also the Jurassic sandstonesand mudstones formed another favorable reservoir-seal as-semblage. The traps are shaped late in the fold-thrust belt,mainly fixed in the Tertiary-Quaternary, where ten structurestyles have been distinguished. These traps spread as a zonein N-S, are scattered like a segmental line in W-E and showtier-styled vertically. The best traps are gypsum-salt coveredfault-bend anticlines related to the passive roof duplex. Thispetroleum system is characterized by late accumulation. Inthe early Himalayan Movement, mainly gas condensate andoil accumulated and were distributed in the outer circularregion of the kitchen; whereas in the middle and late Hima-layan the gas accumulations mainly formed and were dis-tributed in the inner circular region near the kitchen. Theoverpressure of gas pools is common and is formed by sealcapacity of thick gypsum layers, extensive tectonic compres-sion and large uplift. The well-preserved anticline traps un-derlying the high-quality regional cap rocks of the Tertiarygypsum rocks and gypseous mudstones are the main targetsfor the discovery of giant and medium-sized gas fields. Aboveconclusions are important for the petroleum geology theoryand the exploration of the fold-thrust belt in foreland basinsin central and western China. 展开更多
关键词 coal-bearing source rock fault-related FOLD oil and gas POOL GIANT and medium-sized gas field KUQA Depression.
原文传递
Stable carbon and hydrogen isotopes of gases from the large tight gas fields in China 被引量:21
14
作者 DAI JinXing NI YunYan +5 位作者 HU GuoYi HUANG ShiPeng LIAO FengRong YU Cong GONG DeYu WU Wei 《Science China Earth Sciences》 SCIE EI CAS 2014年第1期88-103,共16页
By the end of the year 2010, a total of 15 large tight gas fields have been found in China, located in the Ordos, Sichuan, and Tarim basins. The annual production and total reserves of these fields in 2010 were 222.5&... By the end of the year 2010, a total of 15 large tight gas fields have been found in China, located in the Ordos, Sichuan, and Tarim basins. The annual production and total reserves of these fields in 2010 were 222.5× 108 and 28657× 108 m3, respectively, accounting for 23.5% and 37.3%, respectively, of the total annual production and reserves of natural gases in China. They took a major part of all natural gas production and reserves in China. According to the analyses of 81 gas samples, the stable carbon and hydrogen isotopic compositions of tight gases in China have following characteristics: (1) Plots of δ13CI-δ13C2-δ13C3, δ13C1-C1/C2+3 and δ13C1-δ 13C2 demonstrate the coal-derived origin of tight gases in China; (2) For the primary alkane gases, both carbon and hydrogen isotopic values increase with increasing molecular mass, i.e., δ13C1〈δ13C2〈δ13C3〈δ13C4 and δ2HI〈δ2Hz〈δ2H3; (3) The isotopic differences of δ13C2-δ13C1, δ13C3-δ13C1, δ2H2-δ22Hl and cTZH3-62H1 decrease with in- creasing Ro (%) and C1/C1-4; (4) There are seven causes for the carbon and hydrogen isotopic reversal, however, the carbon and hydrogen isotopic reversal of tight gases in China is caused mainly by multiple stages of gas charge and accumulation. 展开更多
关键词 tight sandstone gas large gas field carbon and hydrogen isotope coal-derived gas China
原文传递
Geological characteristics of large gas provinces and large gas fields in China 被引量:4
15
作者 ZOU CaiNeng &TAO ShiZhen Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China 《Science China Earth Sciences》 SCIE EI CAS 2008年第S1期14-35,共22页
Based on the examination of the global researches on oil and gas provinces and large gas fields and the analysis of the features,attributes and distribution of large gas provinces and gas fields,this paper puts forwar... Based on the examination of the global researches on oil and gas provinces and large gas fields and the analysis of the features,attributes and distribution of large gas provinces and gas fields,this paper puts forward three indicators of determining large oil and gas provinces:spatial indicator,reservoir-forming indicator and resource indicator.It classifies the gas accumulated areas and large gas provinces in China and analyzes the controlling factors on the distribution of large gas provinces and large gas fields:the lateral distribution is mainly controlled by high-energy sedimentary facies and constructive diagenetic facies,palaeo-highs and their periclinal zones,deep faults,etc,and the vertical distribution is mainly controlled by unconformities,series of evaporates and deep low-velocity highly-conductive beds,etc.It also reveals the main geological characteristics of large gas provinces and large gas fields in China.Large gas fields in four-type basins have their own characteristics and onland large gas fields are dominantly developed in foreland basins and craton basins;there are three types of gas sources,of which,coal is the main source with high gas generating intensity and varying origins;reservoir rocks of the large gas fields(provinces)are of various types and dominated generally by low-middle permeability and porosity pore-type reservoirs;structural traps and litho-stratigraphic traps coexist in Chinese large gas fields and form dense high abundance and large-area low and middle-abundance large gas fields;most of the large gas fields have late hydrocarbon-generation peaks and reservoir formation,and experienced the process of multiple-stage charging and late finalization; large gas provinces(fields)have good sealing and preservation conditions,and evaporates seals are largely developed in large and extra-large gas fields.This paper intends to shed light on the exploration and development of large gas fields(provinces)through analyzing their geological characteristics. 展开更多
关键词 large gas province large gas field INDICATOR of large oil and gas PROVINCES forming condition distribution characteristics GEOLOGICAL feature
原文传递
Controlling factors for large gas field formation in thrust belt of Kuqa coal derived hydrocarbon foreland basin 被引量:20
16
作者 SONG Yan JIA Chengzao +1 位作者 ZHAO Mengjun TIAN Zuoji 《Chinese Science Bulletin》 SCIE EI CAS 2002年第S1期55-61,共7页
Kuqa depression is a foreland basin developedwith Mesozoic-Triassic-Jurassic coal-bearing formation. Theresearch results of the coal-derived hydrocarbon forelandbasins in Kuqa depression indicated that the coal-bearin... Kuqa depression is a foreland basin developedwith Mesozoic-Triassic-Jurassic coal-bearing formation. Theresearch results of the coal-derived hydrocarbon forelandbasins in Kuqa depression indicated that the coal-bearingformation can be the rich sources for generating gas becauseof their thickness and rich source rocks with gas-generatingpredominant kerogen. Although the foreland thrust beltmainly acting in compression is very complicated, integrallarge structural traps can be formed. Moreover, the thrustbelt can act as the passage for communication with deepsource rocks. The high quality gypsolish and gypseous mud-stone cap rock developed in the upper formation is the keyfor the formation of the large gas field. The late formation ofreservoirs in the large gas fields depended on the hydrocar-bon-generating history controlled by the foreland basin andthe developing process of foreland thrust belt. 展开更多
关键词 FORELAND basin THRUST belt coal-bearing FORMATION large gas field.
原文传递
Sichuan super gas basin in southwest China 被引量:3
17
作者 DAI Jinxing NI Yunyan +7 位作者 LIU Quanyou WU Xiaoqi GONG Deyu HONG Feng ZHANG Yanling LIAO Fengrong YAN Zengmin LI Hongwei 《Petroleum Exploration and Development》 CSCD 2021年第6期1251-1259,共9页
A sedimentary basin is classified as a super basin when its cumulative production exceeds 5 billion barrels of oil equivalent(6.82×10^(8) t of oil or 7931.66×10^(8) m^(3) of gas)and its remaining recoverable... A sedimentary basin is classified as a super basin when its cumulative production exceeds 5 billion barrels of oil equivalent(6.82×10^(8) t of oil or 7931.66×10^(8) m^(3) of gas)and its remaining recoverable resources are at least 5 billion barrels of oil equivalent.By the end of 2019,the total output of oil and gas in Sichuan Basin had been 6569×10^(8) m^(3),the ratio of gas to oil was 80:1,and the total remaining recoverable resources reached 136404×10^(8) m^(3),which makes it as a second-tier super basin.Because the output is mainly gas,it is a super gas basin.The reason why the Sichuan Basin is a super gas basin is that it has four advantages:(1)The advantage of gas source rocks:it has the most gas source rocks(9 sets)among all the basins in China.(2)The advantage of resource quantity:it has the most total remaining recoverable resources among all the basins in China(136404×10^(8) m^(3)).(3)The advantage of large gas fields:it has the most large gas fields(27)among all the basins in China.(4)The advantage of total production:by the end of 2019,the total gas production had been 6487.8×10^(8) m^(3),which ranked the first among all the basins in China.There are four major breakthroughs in natural gas exploration in Sichuan Basin:(1)Breakthrough in shale gas:shale gas was firstly found in the Ordovician Wufeng-Silurian Longmaxi formations in China.(2)Breakthrough in tight sandstone gas:the Triassic Xu2 Member gas reservoir in Zhongba gas field is the first high recovery tight sandstone gas reservoir in China.(3)Breakthrough in giant carbonate gas fields.(4)Breakthrough in ultra-deep gas reservoir.These breakthroughs have led to important progress in different basins across the country.Super basins are classified according to three criteria:accumulative oil and gas production,remaining recoverable resources,tectonic attributes of the basin and the proportion of oil and gas in accumulative oil and gas production. 展开更多
关键词 Sichuan Basin super basin oil and gas production RESOURCE source rocks large gas fields shale gas tight sandstone gas ultra-deep gas reservoir
下载PDF
Characteristics and accumulation mode of large-scale Sinian-Cambrian gas reservoirs in the Gaoshiti-Moxi region, Sichuan Basin 被引量:1
18
作者 Guoqi Wei Jinhu Du +5 位作者 Chunchun Xu Caineng Zou Wei Yang Ping Shen Zengye Xie Jian Zhang 《Petroleum Research》 2016年第2期164-177,共14页
The Sinian-Cambrian formations of the Sichuan Basin have favorable hydrocarbon accumulation conditions,but the exploration for large-scale gas fields is quite challenging due to old strata and multiple tectonic moveme... The Sinian-Cambrian formations of the Sichuan Basin have favorable hydrocarbon accumulation conditions,but the exploration for large-scale gas fields is quite challenging due to old strata and multiple tectonic movements.Since the Weiyuan Sinian large gas field was found in 1964,the largest monoblock gas field(Anyue Gasfield)was discovered in the Cambrian Longwangmiao Formation of the Moxi region in 2013 with proven gas reserves of 440.1×109 m3.Total proven,probable and possible reserves exceed one trillion cubic meters in the Sinian Dengying Formation and the Cambrian Longwangmiao Formation of the Gaoshiti-Moxi region.The natural gas components,light hydrocarbons,reservoir bitumen abundance and other evidences prove that the dry natural gas was mainly derived from oil-cracking,with methane(a content of 82.65%-97.35%),ethane(a content of 0.01%-0.29%),nitrogen(a content of 0.44%-6.13%),helium(a content of 0.01%-0.06%),and hydrogen sulphide(0.62-61.11 g/m^(3)).Gas reservoir pressure increases gradually from the Sinian normal pressure(a pressure coefficient of 1.07-1.13)to high pressure(a pressure coefficient of 1.53-1.70)in the Cambrian Longwangmiao Formation.The temperature of the gas reservoir is 137.5-163 ℃.Gas reservoir traps are divided into three categories:tectonic type,tectonic-formation type and tectonic-lithologic type.The large-scale enrichment of the Sinian-Cambrian natural gas results from effective configuration of the large stable inherited palaeo-uplift during the Tongwan tectonic movement,wide distribution of ancient source rocks,high-quality reservoirs with vast pore-cavity,crude oil cracking of large palaeo-reservoirs and favorable preservation conditions.According to the palaeo-structure pattern prior to crude oil cracking of the palaeo-reservoirs,and bitumen abundance as well as the distribution characteristics of current gas reservoirs,the accumulation patterns of the cracking gas reservoir can be classified into three types:accumulation type,semi-accumulation and semi-dispersion type,and dispersion type.This understanding will play an important role in guiding the exploration of the Sinian-Cambrian natural gas exploration in the Sichuan Basin. 展开更多
关键词 palaeo-uplift large gas field crude oil cracking gas accumulation mode Gaoshiti-Moxi Sichuan Basin
原文传递
Hydrocarbon source systems and formation of gas fields in Sichuan Basin
19
作者 黄籍中 陈盛吉 +4 位作者 宋家荣 王兰生 苟学敏 王廷栋 戴鸿鸣 《Science China Earth Sciences》 SCIE EI CAS 1997年第1期32-42,共11页
The formation of large and middle gas fields in Sichuan Basin is investigated based on source controlling theory and hydrocarbon source systems. It is indicated that (?)1, S1, P1, P2 and T3 are the main source beds an... The formation of large and middle gas fields in Sichuan Basin is investigated based on source controlling theory and hydrocarbon source systems. It is indicated that (?)1, S1, P1, P2 and T3 are the main source beds and (?)1/Z2d, C2h/S1, P1/P2, P2ch/P2, T1,2/P, T3x/T3x are important hydrocarbon source systems in the basin. All these source systems are the prospective formations and exploration spaces of large and middle gas fields. It is also emphasized that hydrocarbon generation intensity is the most important geochemical factor to estimate large and middle gas fields. 展开更多
关键词 large and MIDDLE gas fields HYDROCARBON source system HYDROCARBON generation intensity SICHUAN Basin.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部