A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was perfo...A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was performed to explore the effects of beam drifts in different directions and distances on the angular distribution of the Rutherford scattering,as measured by the detector array.The results indicate that when the beam drift distance is less than 2.0 mm,the symmetry of the detector array can maintain a count error of less than 5%.This confirms the property of the detector array for RIB experiments.Furthermore,the simulation was validated through the elastic scattering angular distributions of 6;7 Li measured by the detector array in 6;7Li t209 Bi experiments at different energies.展开更多
An efficient analyzing approach is presented for large slotted-waveguide antenna arrays by using hybrid finite element-boundary integral-multilevel fast multipole algorithm(FE-BI-MLFMA)in this paper.A simple computa...An efficient analyzing approach is presented for large slotted-waveguide antenna arrays by using hybrid finite element-boundary integral-multilevel fast multipole algorithm(FE-BI-MLFMA)in this paper.A simple computation model for slotted-waveguide antenna is presented by using thin current probe excitation and perfectly matched layer(PML)absorber.Since each slotted-waveguide antenna can be considered as a single sub-domain,the domain decomposition algorithm(DDA)can be applied to FE-BI-MLFMA to greatly reduce the computation resources and achieve high efficiency.This DDA-FE-BI-MLMFA is parallelized to further strength its capability.The comparisons of the computed radiation patterns with measured data and results from the commercial software show that our method has good accuracy for slottedwaveguide array.Then the influence of mutual coupling between adjacent slotted-waveguides is studied.To demonstrate capability of the presented method,a carefully designed large X-band slotted-waveguide antenna array containing eighteen waveguides with Taylor amplitude and inverse phase excitation distribution are analyzed in the paper.展开更多
The existence of strong interference is the main constraint factor, which influences the detection performance of a signal extraction system. For a sonar with large array the problem of anti-interferences in all-direc...The existence of strong interference is the main constraint factor, which influences the detection performance of a signal extraction system. For a sonar with large array the problem of anti-interferences in all-direction has not been solved yet because of the requirements of over-long time delay line and the over high input- output rate. A method proposed in this paper can be used in the design of adaptive signal processing system with large array for suppressing the strong interference in all-direction. This is a combined architecture of adaptive noise canceller (ANC)and a programmable DICANNE system.When the incident angle between signal θS and interference θI is small, the ANC system is used. When θs-θI is large, a programmable DICANNE system, with rising sampling rate, is used, so that an all-directional anti-interferences system can be obtained. The structure described in this paper is easy to implement in hardware by using DSP chips.The design diagram and implementable method in hardware is presented.展开更多
As the fifth-generation(5G)mobile communication system is being commercialized,extensive studies on the evolution of 5G and sixth-generation(6G)mobile communication systems have been conducted.Future mobile communicat...As the fifth-generation(5G)mobile communication system is being commercialized,extensive studies on the evolution of 5G and sixth-generation(6G)mobile communication systems have been conducted.Future mobile communication systems are evidently evolving toward a more intelligent and software-reconfigurable functionality paradigm that can provide ubiquitous communication,as well as sense,control,and optimize wireless environments.Thus,integrating communication and localization using the highly directional transmission characteristics of millimeter waves(mmWaves)is a promising route.This approach not only expands the localization capabilities of a communication system but also provides new concepts and opportunities to enhance communication.In this paper,we explain the integrated communication and localization in mmWave systems,in which these processes share the same set of hardware architecture and algorithms.We also provide an overview of the key enabling technologies and the basic knowledge on localization.Then,we provide two promising directions for studies on localization with an extremely large antenna array and model-based(or model-driven)neural networks.We also discuss a comprehensive guidance for location-assisted mmWave communications in terms of channel estimation,channel state information feedback,beam tracking,synchronization,interference control,resource allocation,and user selection.Finally,we outline the future trends on the mutual assistance and enhancement of communication and localization in integrated systems.展开更多
The large bandwidth available with mmWave(millimeter Wave)makes it a promising candidate for 5th generation cellular networks.Proper channel estimation algorithms must be developed to enable beamforming in mmWave syst...The large bandwidth available with mmWave(millimeter Wave)makes it a promising candidate for 5th generation cellular networks.Proper channel estimation algorithms must be developed to enable beamforming in mmWave systems.In this paper,we propose an adaptive channel estimation algorithm that exploits the poor scattering nature of the mmWave channel and adjusts the training overhead adaptively with the change of channel quality for mmWave cellular systems.First,we use a short training sequence to estimate the channel parameters based on the two-dimensional discrete Fourier transform method.Then,we design a feedback scheme to adjust the length of the training sequence under the premise of ensuring the accuracy of the channel estimation.The key threshold in the feedback scheme is derived and its influence on the accuracy of the estimation results is analyzed.Simulation results confirm that the proposed algorithm can adjust the length of the training sequence adaptively according to the current channel condition maintaining a stable estimation accuracy.展开更多
基金the National Natural Science Foundation of China(Nos.11635015,U1832130,and 11975040)the State Key Laboratory of Software Development Environment(SKLSDE-2020ZX-16)+1 种基金the Continuous Basic Scientific Research Project(No.WDJC-2019-13)the Leading Innovation Project(Nos.LC192209000701 and LC202309000201).
文摘A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was performed to explore the effects of beam drifts in different directions and distances on the angular distribution of the Rutherford scattering,as measured by the detector array.The results indicate that when the beam drift distance is less than 2.0 mm,the symmetry of the detector array can maintain a count error of less than 5%.This confirms the property of the detector array for RIB experiments.Furthermore,the simulation was validated through the elastic scattering angular distributions of 6;7 Li measured by the detector array in 6;7Li t209 Bi experiments at different energies.
基金Supported by the National Key Basic Research Program(973 Program)(2012CB720702,61320602)the 111 Project of China(B14010)the National Natural Science Foundation of China(61371002)
文摘An efficient analyzing approach is presented for large slotted-waveguide antenna arrays by using hybrid finite element-boundary integral-multilevel fast multipole algorithm(FE-BI-MLFMA)in this paper.A simple computation model for slotted-waveguide antenna is presented by using thin current probe excitation and perfectly matched layer(PML)absorber.Since each slotted-waveguide antenna can be considered as a single sub-domain,the domain decomposition algorithm(DDA)can be applied to FE-BI-MLFMA to greatly reduce the computation resources and achieve high efficiency.This DDA-FE-BI-MLMFA is parallelized to further strength its capability.The comparisons of the computed radiation patterns with measured data and results from the commercial software show that our method has good accuracy for slottedwaveguide array.Then the influence of mutual coupling between adjacent slotted-waveguides is studied.To demonstrate capability of the presented method,a carefully designed large X-band slotted-waveguide antenna array containing eighteen waveguides with Taylor amplitude and inverse phase excitation distribution are analyzed in the paper.
文摘The existence of strong interference is the main constraint factor, which influences the detection performance of a signal extraction system. For a sonar with large array the problem of anti-interferences in all-direction has not been solved yet because of the requirements of over-long time delay line and the over high input- output rate. A method proposed in this paper can be used in the design of adaptive signal processing system with large array for suppressing the strong interference in all-direction. This is a combined architecture of adaptive noise canceller (ANC)and a programmable DICANNE system.When the incident angle between signal θS and interference θI is small, the ANC system is used. When θs-θI is large, a programmable DICANNE system, with rising sampling rate, is used, so that an all-directional anti-interferences system can be obtained. The structure described in this paper is easy to implement in hardware by using DSP chips.The design diagram and implementable method in hardware is presented.
基金Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars(No.61625106)the National Natural Science Foundation of China(No.61941104)the Scientific Research Foundation of Graduate School of Southeast University,China(No.YBPY2015)。
文摘As the fifth-generation(5G)mobile communication system is being commercialized,extensive studies on the evolution of 5G and sixth-generation(6G)mobile communication systems have been conducted.Future mobile communication systems are evidently evolving toward a more intelligent and software-reconfigurable functionality paradigm that can provide ubiquitous communication,as well as sense,control,and optimize wireless environments.Thus,integrating communication and localization using the highly directional transmission characteristics of millimeter waves(mmWaves)is a promising route.This approach not only expands the localization capabilities of a communication system but also provides new concepts and opportunities to enhance communication.In this paper,we explain the integrated communication and localization in mmWave systems,in which these processes share the same set of hardware architecture and algorithms.We also provide an overview of the key enabling technologies and the basic knowledge on localization.Then,we provide two promising directions for studies on localization with an extremely large antenna array and model-based(or model-driven)neural networks.We also discuss a comprehensive guidance for location-assisted mmWave communications in terms of channel estimation,channel state information feedback,beam tracking,synchronization,interference control,resource allocation,and user selection.Finally,we outline the future trends on the mutual assistance and enhancement of communication and localization in integrated systems.
基金supported by The National High Technology Research and Development Program of China(863 Program)(No.2015AA01A703)The Fundamental Research Funds for the Central Universities(No.2014ZD03-02)+1 种基金The National Natural Science Foundation of China(No.61571055)fund of State Key Laboratory of Millimeter Wave(No.K201501).
文摘The large bandwidth available with mmWave(millimeter Wave)makes it a promising candidate for 5th generation cellular networks.Proper channel estimation algorithms must be developed to enable beamforming in mmWave systems.In this paper,we propose an adaptive channel estimation algorithm that exploits the poor scattering nature of the mmWave channel and adjusts the training overhead adaptively with the change of channel quality for mmWave cellular systems.First,we use a short training sequence to estimate the channel parameters based on the two-dimensional discrete Fourier transform method.Then,we design a feedback scheme to adjust the length of the training sequence under the premise of ensuring the accuracy of the channel estimation.The key threshold in the feedback scheme is derived and its influence on the accuracy of the estimation results is analyzed.Simulation results confirm that the proposed algorithm can adjust the length of the training sequence adaptively according to the current channel condition maintaining a stable estimation accuracy.