Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced ...Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.展开更多
Objective:To explore the effect ofβ-TCP/PLLA scaffold in repairing rabbit radial lone defects.Methods:Thirty New Zealand rabbits were divided intoβ-TCP/PLLA group(group A),pure PLLA group(group B)and contrast group(...Objective:To explore the effect ofβ-TCP/PLLA scaffold in repairing rabbit radial lone defects.Methods:Thirty New Zealand rabbits were divided intoβ-TCP/PLLA group(group A),pure PLLA group(group B)and contrast group(group C)randomly.The rabbits were sacrificed respectively after 4.8.12,24 weeks and the X-ray film was performed at the same time to evaluate the repair effect in different groups.Retiults:X-ray film showed there was uneven low density bone callus development in defect region after 4 weeks in group A.The defect region was filled with neonate osseous tissue completely during 12-24 weeks.X-ray score revealed that repair of bone defect results significantly better than group B and group C.Conclusions:Theβ-PCP/PLLA composite is capable of repairing radial lone lone defects.β-TCP/PLLA scaffold is significant because of rapid degradation ability,good histocompatihility and osteogenic action.展开更多
Mechanically strong magnesium-doped Ca-silicate bioceramic scaffolds have many advantages in repairing large segmental bone defects.Herein we combine β-TCP with 6 mol%magnesium-doped calcium silicate(Mg6)at three dif...Mechanically strong magnesium-doped Ca-silicate bioceramic scaffolds have many advantages in repairing large segmental bone defects.Herein we combine β-TCP with 6 mol%magnesium-doped calcium silicate(Mg6)at three different ratios(TCP,TCP+15%Mg6,TCP+85%Mg6)to find an appropriate ratio which can exert considerable influence on bone regeneration.In this study,the bioceramic scaffolds were assessed for mechanical strength,bioactive ion release,biocompatibility,and osteogenic capacity through in vitro testing.Additionally,the potential for promoting bone regeneration was investigated through in vivo implantation of porous tube-like scaffolds.The results showed that the compressive strength increased with the augmentation of Mg6 component.Especially the compressive strength of the TCP+85%Mg6 group reached 38.1±3.8 MPa,three times that of the other two groups.Furthermore,extensive in vivo investigations revealed that the TCP+85%Mg6 bioceramic scaffolds were particularly beneficial for the osteogenic capacity of critical-sized femoral defects(20 mm in length).Altogether,magnesium doping in bioceramic implants is a promising strategy to provide stronger mechanical support and enhance osteogenesis to accelerate the repair of large defects.展开更多
Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing techn...Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing technology in the reconstruction of such acetabular bone defects.We retrospectively analyzed the prognosis of four severe bone defects around the acetabulum in three patients who were treated using 3D printing technology.Reconstruction of bone defect by conventional methods was difficult in these patients.In this endeavor,we used radiographic methods,related computer software such as Materialise's interactive medical image control system and Siemens NX software,and actual surgical experience to estimate defect volume,prosthesis stability,and installation accuracy,respectively.Moreover,a Harris hip score was obtained to evaluate limb function.It was found that bone defects could be adequately reconstructed using a 3D printing prosthesis,and its stability was reliable.The Harris hip score indicated a very good functional recovery in all three patients.In conclusion,3D printing technology had a good therapeutic effect on both complex and large bone defects in the revision of THA.It was able to achieve good curative effects in patients with large bone defects.展开更多
For large segmental bone defects,porous titanium scaffolds have some advantages,however,they lack electrical activity which hinders their further use.In this study,a barium titanate(BaTiO3)piezoelectric ceramic was us...For large segmental bone defects,porous titanium scaffolds have some advantages,however,they lack electrical activity which hinders their further use.In this study,a barium titanate(BaTiO3)piezoelectric ceramic was used to modify the surface of a porous Ti6Al4V scaffold(pTi),which was characterized by scanning electron microscopy,energy dispersive spectroscopy,X-ray photoelectron spectroscopy,and roughness and water contact angle analyses.Low intensity pulsed ultrasound(LIPUS)was applied in vitro and in vivo study.The activity of bone marrow mesenchymal stem cells,including adhesion,proliferation,and gene expression,was significantly superior in the BaTiO3/pTi,pTi+LIPUS,and BaTiO3/pTi+LIPUS groups than in the pTi group.The activity was also higher in the BaTiO3/pTi+LIPUS group than in the BaTiO3/pTi and pTi+LIPUS groups.Additionally,micro-computed tomography,the mineral apposition rate,histomorphology,and the peak pull-out load showed that these scaffold conditions significantly enhanced osteogenesis and osseointegration 6 and 12 weeks after implantation in large segmental bone defects in the radius of rabbits compared with those resulting from the pTi condition.Consequently,the improved osteogenesis and osseointegration make the BaTiO3/pTi+LIPUS a promising method to promote bone regeneration in large segmental bone defects for clinical application.展开更多
Bone is a complex biological tissue with a complicated hierarchical nanocomposite structure.The native microen-vironment of the bone tissue may be significantly disrupted by large physiological and pathological bone d...Bone is a complex biological tissue with a complicated hierarchical nanocomposite structure.The native microen-vironment of the bone tissue may be significantly disrupted by large physiological and pathological bone defects.Bone defects are often treated via complex surgical procedures that involve the application of autografts or al-lografts.While these grafting procedures often suffer from insufficient natural bone stock and immunorejection.Moreover,these traditional treatment methods fail to simulate a regenerative microenvironment,which plays a significant role in regeneration of bone tissue and repair of large bone defects.To this end,various biomimetic scaffolds have been devised to mimic the native microenvironment of bone and thereby to simultaneously re-pair bone defects and promote bone regeneration.We propose here a novel concept,in vivo bone regenerative microenvironment(BRM),which enables repair of large bone defects and enhances new bone tissue formation with external regulation.In this review,we mainly focus on materials and methods for fabrication of biomimetic scaffolds,as well as their therapeutic efficacy in modulating the BRM of large physiological and pathological bone defects.展开更多
文摘Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.
基金suppoted by the National Natural Science Foundution of China(NSFC)(No.81271988)Shanghat Sereure and Technology Commissiop project No.11DJ1400304.No.12441903102)the crseatobgrant of Matertals Science and Engineering College of Shanghal Jraolong University and the research grant of the 6th Peoples Hospital affiliated to Shanghai Jiaolong University
文摘Objective:To explore the effect ofβ-TCP/PLLA scaffold in repairing rabbit radial lone defects.Methods:Thirty New Zealand rabbits were divided intoβ-TCP/PLLA group(group A),pure PLLA group(group B)and contrast group(group C)randomly.The rabbits were sacrificed respectively after 4.8.12,24 weeks and the X-ray film was performed at the same time to evaluate the repair effect in different groups.Retiults:X-ray film showed there was uneven low density bone callus development in defect region after 4 weeks in group A.The defect region was filled with neonate osseous tissue completely during 12-24 weeks.X-ray score revealed that repair of bone defect results significantly better than group B and group C.Conclusions:Theβ-PCP/PLLA composite is capable of repairing radial lone lone defects.β-TCP/PLLA scaffold is significant because of rapid degradation ability,good histocompatihility and osteogenic action.
基金support from the Medical Science and Technology Project of Zhejiang Province (2022+ZDXK-04)Zhejiang Provincial Basic Research for Public Welfare Funds (LGF20H060016,LGF21H060006,LGF22E030002)+1 种基金National Natural Science Foundation of China (82172419,82101649)Zheiang Provincial Natural Science Foundation of China (LZ22E020002).
文摘Mechanically strong magnesium-doped Ca-silicate bioceramic scaffolds have many advantages in repairing large segmental bone defects.Herein we combine β-TCP with 6 mol%magnesium-doped calcium silicate(Mg6)at three different ratios(TCP,TCP+15%Mg6,TCP+85%Mg6)to find an appropriate ratio which can exert considerable influence on bone regeneration.In this study,the bioceramic scaffolds were assessed for mechanical strength,bioactive ion release,biocompatibility,and osteogenic capacity through in vitro testing.Additionally,the potential for promoting bone regeneration was investigated through in vivo implantation of porous tube-like scaffolds.The results showed that the compressive strength increased with the augmentation of Mg6 component.Especially the compressive strength of the TCP+85%Mg6 group reached 38.1±3.8 MPa,three times that of the other two groups.Furthermore,extensive in vivo investigations revealed that the TCP+85%Mg6 bioceramic scaffolds were particularly beneficial for the osteogenic capacity of critical-sized femoral defects(20 mm in length).Altogether,magnesium doping in bioceramic implants is a promising strategy to provide stronger mechanical support and enhance osteogenesis to accelerate the repair of large defects.
基金This work is supported by National Key Research and Development Program of China(2016YFC1100600)the National Natural Science Foundation of China(81972058 and 81902194)the Multicenter Clinical Research Project of Shanghai Jiao Tong University School of Medicine(DLY201506).
文摘Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing technology in the reconstruction of such acetabular bone defects.We retrospectively analyzed the prognosis of four severe bone defects around the acetabulum in three patients who were treated using 3D printing technology.Reconstruction of bone defect by conventional methods was difficult in these patients.In this endeavor,we used radiographic methods,related computer software such as Materialise's interactive medical image control system and Siemens NX software,and actual surgical experience to estimate defect volume,prosthesis stability,and installation accuracy,respectively.Moreover,a Harris hip score was obtained to evaluate limb function.It was found that bone defects could be adequately reconstructed using a 3D printing prosthesis,and its stability was reliable.The Harris hip score indicated a very good functional recovery in all three patients.In conclusion,3D printing technology had a good therapeutic effect on both complex and large bone defects in the revision of THA.It was able to achieve good curative effects in patients with large bone defects.
基金supported by grants from the National Key Research and Development Program of China(grant number 2017YFC1104901)to Zheng Guothe National Natural Science Foundation of China(grant number 51771227)to Zheng Guo+2 种基金the Youth Development Program of Chinese People's Liberation Army(No.20QNPY069)to Bo Fanthe National Natural Science Foundation of China(No.31800812)to Bo Fanthe National Natural Science Foundation of China(grant number 51771227)to Zheng Guo.
文摘For large segmental bone defects,porous titanium scaffolds have some advantages,however,they lack electrical activity which hinders their further use.In this study,a barium titanate(BaTiO3)piezoelectric ceramic was used to modify the surface of a porous Ti6Al4V scaffold(pTi),which was characterized by scanning electron microscopy,energy dispersive spectroscopy,X-ray photoelectron spectroscopy,and roughness and water contact angle analyses.Low intensity pulsed ultrasound(LIPUS)was applied in vitro and in vivo study.The activity of bone marrow mesenchymal stem cells,including adhesion,proliferation,and gene expression,was significantly superior in the BaTiO3/pTi,pTi+LIPUS,and BaTiO3/pTi+LIPUS groups than in the pTi group.The activity was also higher in the BaTiO3/pTi+LIPUS group than in the BaTiO3/pTi and pTi+LIPUS groups.Additionally,micro-computed tomography,the mineral apposition rate,histomorphology,and the peak pull-out load showed that these scaffold conditions significantly enhanced osteogenesis and osseointegration 6 and 12 weeks after implantation in large segmental bone defects in the radius of rabbits compared with those resulting from the pTi condition.Consequently,the improved osteogenesis and osseointegration make the BaTiO3/pTi+LIPUS a promising method to promote bone regeneration in large segmental bone defects for clinical application.
基金supported by the National Natural Science Foundation of China(No.31971271)。
文摘Bone is a complex biological tissue with a complicated hierarchical nanocomposite structure.The native microen-vironment of the bone tissue may be significantly disrupted by large physiological and pathological bone defects.Bone defects are often treated via complex surgical procedures that involve the application of autografts or al-lografts.While these grafting procedures often suffer from insufficient natural bone stock and immunorejection.Moreover,these traditional treatment methods fail to simulate a regenerative microenvironment,which plays a significant role in regeneration of bone tissue and repair of large bone defects.To this end,various biomimetic scaffolds have been devised to mimic the native microenvironment of bone and thereby to simultaneously re-pair bone defects and promote bone regeneration.We propose here a novel concept,in vivo bone regenerative microenvironment(BRM),which enables repair of large bone defects and enhances new bone tissue formation with external regulation.In this review,we mainly focus on materials and methods for fabrication of biomimetic scaffolds,as well as their therapeutic efficacy in modulating the BRM of large physiological and pathological bone defects.