In the present paper, the isogeometric analysis(IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature...In the present paper, the isogeometric analysis(IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables(displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline(NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.展开更多
In this paper, the meshless integral method based on the regularized boundary integral equation [1] has been extended to analyze the large deformation of elastoplastic materials. The updated Lagrangian governing integ...In this paper, the meshless integral method based on the regularized boundary integral equation [1] has been extended to analyze the large deformation of elastoplastic materials. The updated Lagrangian governing integral equation is obtained from the weak form of elastoplasticity based on Green-Naghdi’s theory over a local sub-domain, and the moving least-squares approximation is used for meshless function approximation. Green-Naghdi’s theory starts with the additive decomposition of the Green-Lagrange strain into elastic and plastic parts and considers aJ2elastoplastic constitutive law that relates the Green-Lagrange strain to the second Piola-Kirchhoff stress. A simple, generalized collocation method is proposed to enforce essential boundary conditions straightforwardly and accurately, while natural boundary conditions are incorporated in the system governing equations and require no special handling. The solution algorithm for large deformation analysis is discussed in detail. Numerical examples show that meshless integral method with large deformation is accurate and robust.展开更多
A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate ...A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate pair of the first Piola Kirchhoff stress tensor and deformation gradient tensor is considered for the stress and strain measures in the paper.Through introducing the displacement vector,the deformation gradient,and the stress tensor in the Cartesian coordinate system and by means of the chain rule for taking derivative of tensors,the difficulties in using the curvilinear coordinate system are bypassed.The variational differential quadrature(VDQ)method as a pointwise numerical method is also used to discretize the weak form of the governing equations.Being locking-free,the simple implementation,computational efficiency,and fast convergence rate are the main features of the proposed numerical approach.Some well-known benchmark problems are solved to assess the approach.The results indicate that it is capable of addressing the large deformation problems of elastic and hyperelastic shell-type structures efficiently.展开更多
橡胶材料因具有良好的抗震、吸能作用,在实际工程中应用广泛.然而橡胶超弹性材料的碰撞属于强非线性问题,分析橡胶材料的接触碰撞和大变形问题对于提高装置的缓冲性能具有重要意义.光滑有限元法(smoothed finite element method,S-FEM)...橡胶材料因具有良好的抗震、吸能作用,在实际工程中应用广泛.然而橡胶超弹性材料的碰撞属于强非线性问题,分析橡胶材料的接触碰撞和大变形问题对于提高装置的缓冲性能具有重要意义.光滑有限元法(smoothed finite element method,S-FEM)是一种弱形式的数值计算方法,相比于传统的有限元方法,光滑有限元法对网格的质量要求不高,允许单元在计算过程中发生较大的变形,且光滑域的构造比较灵活,在不增加自由度的前提下,可以达到较高的精度.在光滑有限元法的基础上,采用双势方法进行接触计算,以充分利用光滑有限元法计算大变形问题的优点和双势方法求解接触力的优势.通过与有限元软件MSC.Marc的数值结果对比,验证了该算法的准确性和能量守恒性,并且分析了摩擦因数对碰撞体的影响.展开更多
文摘In the present paper, the isogeometric analysis(IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables(displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline(NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.
文摘In this paper, the meshless integral method based on the regularized boundary integral equation [1] has been extended to analyze the large deformation of elastoplastic materials. The updated Lagrangian governing integral equation is obtained from the weak form of elastoplasticity based on Green-Naghdi’s theory over a local sub-domain, and the moving least-squares approximation is used for meshless function approximation. Green-Naghdi’s theory starts with the additive decomposition of the Green-Lagrange strain into elastic and plastic parts and considers aJ2elastoplastic constitutive law that relates the Green-Lagrange strain to the second Piola-Kirchhoff stress. A simple, generalized collocation method is proposed to enforce essential boundary conditions straightforwardly and accurately, while natural boundary conditions are incorporated in the system governing equations and require no special handling. The solution algorithm for large deformation analysis is discussed in detail. Numerical examples show that meshless integral method with large deformation is accurate and robust.
文摘A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate pair of the first Piola Kirchhoff stress tensor and deformation gradient tensor is considered for the stress and strain measures in the paper.Through introducing the displacement vector,the deformation gradient,and the stress tensor in the Cartesian coordinate system and by means of the chain rule for taking derivative of tensors,the difficulties in using the curvilinear coordinate system are bypassed.The variational differential quadrature(VDQ)method as a pointwise numerical method is also used to discretize the weak form of the governing equations.Being locking-free,the simple implementation,computational efficiency,and fast convergence rate are the main features of the proposed numerical approach.Some well-known benchmark problems are solved to assess the approach.The results indicate that it is capable of addressing the large deformation problems of elastic and hyperelastic shell-type structures efficiently.
文摘橡胶材料因具有良好的抗震、吸能作用,在实际工程中应用广泛.然而橡胶超弹性材料的碰撞属于强非线性问题,分析橡胶材料的接触碰撞和大变形问题对于提高装置的缓冲性能具有重要意义.光滑有限元法(smoothed finite element method,S-FEM)是一种弱形式的数值计算方法,相比于传统的有限元方法,光滑有限元法对网格的质量要求不高,允许单元在计算过程中发生较大的变形,且光滑域的构造比较灵活,在不增加自由度的前提下,可以达到较高的精度.在光滑有限元法的基础上,采用双势方法进行接触计算,以充分利用光滑有限元法计算大变形问题的优点和双势方法求解接触力的优势.通过与有限元软件MSC.Marc的数值结果对比,验证了该算法的准确性和能量守恒性,并且分析了摩擦因数对碰撞体的影响.