Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically li...Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.展开更多
A key limitation in the observation of instruments used in operations and heart sutures during a procedure is the scattering and absorption during optical imaging in the presence of blood.Therefore,we propose a novel ...A key limitation in the observation of instruments used in operations and heart sutures during a procedure is the scattering and absorption during optical imaging in the presence of blood.Therefore,we propose a novel real-time fiber-optic infrared imaging system simultaneously capturing a flexible wide field of view(FOV) and large depth of field infrared image in real time.The assessment criteria for imaging quality of the objective and coupling lens have been optimized and evaluated.Furthermore,the feasibility of manufacturing and assembly has been demonstrated with tolerance sensitivity and the Monte Carlo analysis.The simulated results show that the optical system can achieve a large working distance of 8 to25 mm,a wide FOV of 120°,and the relative illuminance is over 0.98 in the overall FOV.To achieve high imaging quality in the proposed system,the modulation transfer function is over 0.661 at 16.7 Ip/mm for a 320×256 short wavelength infrared camera sensor with a pixel size of 30 μm.展开更多
基金partially supported by the Gordon and Betty Moore Foundation Grant No.5722
文摘Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.
基金supported by the Shanghai Science and Technology Committee Innovation Grant (No. 19ZR1404600)the National Natural Science Foundation of China (No. 52075100)
文摘A key limitation in the observation of instruments used in operations and heart sutures during a procedure is the scattering and absorption during optical imaging in the presence of blood.Therefore,we propose a novel real-time fiber-optic infrared imaging system simultaneously capturing a flexible wide field of view(FOV) and large depth of field infrared image in real time.The assessment criteria for imaging quality of the objective and coupling lens have been optimized and evaluated.Furthermore,the feasibility of manufacturing and assembly has been demonstrated with tolerance sensitivity and the Monte Carlo analysis.The simulated results show that the optical system can achieve a large working distance of 8 to25 mm,a wide FOV of 120°,and the relative illuminance is over 0.98 in the overall FOV.To achieve high imaging quality in the proposed system,the modulation transfer function is over 0.661 at 16.7 Ip/mm for a 320×256 short wavelength infrared camera sensor with a pixel size of 30 μm.