For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-ove...For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-over risk of the pressure relief tanks.Therefore,simulating the error-opening situations of the pressure relief valves and investigating the oil discharge process are necessary for checking the possibility of the spilling-over accident and then proposing measures to improve the pressure relief system.This research focuses on a continuous undulating oil pipeline with large elevation difference and a station along this pipeline,which is named B station in this paper,is studied.By OLGA software,simulation model of the pressure relief system of B station is established,and the accuracy of the model is verified by reconstructing a real accident and making a comparison with the actual accident data.The maximum discharge rate reached 8284 m3/h when the pressure relief valve was opened by mistake in the inlet and outlet of the station.The accumulated filling time of the two pressure relief tanks is 200 s,which is in good agreement with the accident data.On this basis,for error-opening of the pressure relief valves at the inlet and outlet of B station,simulation is performed to investigate variations of the discharge velocity,discharge flow rate,accumulated discharge volume and ventilation volume of the vent valve.The discharge velocity is found to be over the maximum velocity allowed for safety consideration.According to the accumulated discharge volume,it is inferred that spilling over of the pressure relief tanks will be caused once error-opening of the pressure relief valve occurs.Also it is judged that the existing breathing valve can not satisfy the ventilation requirement in case of failure of the pressure relief valves.From these simulation results,it is proposed that increasing the number of vent valves,replacing the manual valves with electrically operated valves,and employing security control interlock protection program are improvement measures to guarantee safe,efficient and reliable operation of the pressure relief system at B station.展开更多
A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of ...A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.展开更多
The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and soci...The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.展开更多
As the stiffness discontinuous of large diameter steel tube and concrete combined pile, the complicated stress state is caused by the combination of the pile foundation and the base rock, the steel casing and the bedr...As the stiffness discontinuous of large diameter steel tube and concrete combined pile, the complicated stress state is caused by the combination of the pile foundation and the base rock, the steel casing and the bedrock structure. It is needed to put forward a scientific basis to determine the pile foundation effective depth of embedded. For this purpose, the physical model and the numerical model of single pile with large diameter steel tube and reinforced concrete combined force are established. Through numerical simulation and contrast test of a large number of variable parameters, the various factors that affect the lateral bearing capacity of the embedded piles are discussed in detail, the mechanical properties of the foundation under the action of the steel tube and the pile foundation are obtained.展开更多
文摘For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-over risk of the pressure relief tanks.Therefore,simulating the error-opening situations of the pressure relief valves and investigating the oil discharge process are necessary for checking the possibility of the spilling-over accident and then proposing measures to improve the pressure relief system.This research focuses on a continuous undulating oil pipeline with large elevation difference and a station along this pipeline,which is named B station in this paper,is studied.By OLGA software,simulation model of the pressure relief system of B station is established,and the accuracy of the model is verified by reconstructing a real accident and making a comparison with the actual accident data.The maximum discharge rate reached 8284 m3/h when the pressure relief valve was opened by mistake in the inlet and outlet of the station.The accumulated filling time of the two pressure relief tanks is 200 s,which is in good agreement with the accident data.On this basis,for error-opening of the pressure relief valves at the inlet and outlet of B station,simulation is performed to investigate variations of the discharge velocity,discharge flow rate,accumulated discharge volume and ventilation volume of the vent valve.The discharge velocity is found to be over the maximum velocity allowed for safety consideration.According to the accumulated discharge volume,it is inferred that spilling over of the pressure relief tanks will be caused once error-opening of the pressure relief valve occurs.Also it is judged that the existing breathing valve can not satisfy the ventilation requirement in case of failure of the pressure relief valves.From these simulation results,it is proposed that increasing the number of vent valves,replacing the manual valves with electrically operated valves,and employing security control interlock protection program are improvement measures to guarantee safe,efficient and reliable operation of the pressure relief system at B station.
基金The Project Supported by National Natural Science Foundation of China.
文摘A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.
基金supported by the National Natural Science Foundation of China(Nos.52225403,U2013603,52434004,and 52404365)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)+2 种基金the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015)the National Key Research and Development Program of China(2023YFF0615404)the Scientific Instrument Developing Project of Shenzhen University。
文摘The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.
文摘As the stiffness discontinuous of large diameter steel tube and concrete combined pile, the complicated stress state is caused by the combination of the pile foundation and the base rock, the steel casing and the bedrock structure. It is needed to put forward a scientific basis to determine the pile foundation effective depth of embedded. For this purpose, the physical model and the numerical model of single pile with large diameter steel tube and reinforced concrete combined force are established. Through numerical simulation and contrast test of a large number of variable parameters, the various factors that affect the lateral bearing capacity of the embedded piles are discussed in detail, the mechanical properties of the foundation under the action of the steel tube and the pile foundation are obtained.