A GaAs-based planar Schottky varactor diode (PSVD) is successfully developed to meet the demand of millimeter-wave harmonic generation. Based on the measured S-parameter, I-V and C-V characteristics, an accurate and...A GaAs-based planar Schottky varactor diode (PSVD) is successfully developed to meet the demand of millimeter-wave harmonic generation. Based on the measured S-parameter, I-V and C-V characteristics, an accurate and reliable extraction method of the millimeter-wave large signal equivalent circuit model of the PSVD is proposed and used to extract the model parameters of two PSVDs with Schottky contact areas of 160 μm2 and 49 μm2, respectively. The simulated S-parameter, I-V and C-V performances of the proposed physics-based model are in good agreement with the measured one over the frequency range from 0.1 to 40 GHz for wide operation bias range from -10 to 0.6 V for these two PSVDs. The proposed equivalent large signal circuit model of this PSVD has been proven to be reliable and can potentially be used to design microwave circuits.展开更多
基金supported by the Fundamental Research Funds for Central University of China(No.XDJK2013B004)the Research Fund for the Doctoral Program of Southwest University of China(No.SWU111030)the State Key Laboratory for Millimeter Waves of Southeast University of China(No.K201312)
文摘A GaAs-based planar Schottky varactor diode (PSVD) is successfully developed to meet the demand of millimeter-wave harmonic generation. Based on the measured S-parameter, I-V and C-V characteristics, an accurate and reliable extraction method of the millimeter-wave large signal equivalent circuit model of the PSVD is proposed and used to extract the model parameters of two PSVDs with Schottky contact areas of 160 μm2 and 49 μm2, respectively. The simulated S-parameter, I-V and C-V performances of the proposed physics-based model are in good agreement with the measured one over the frequency range from 0.1 to 40 GHz for wide operation bias range from -10 to 0.6 V for these two PSVDs. The proposed equivalent large signal circuit model of this PSVD has been proven to be reliable and can potentially be used to design microwave circuits.