期刊文献+
共找到3,814篇文章
< 1 2 191 >
每页显示 20 50 100
Numerical simulation of rockburst disaster and control strategy of constant resistance and large deformation anchor cable in Gaoloushan tunnel
1
作者 MIAO Cheng-yu JIANG Ming +6 位作者 LI Zhi-hu SUN Xiao-ming ZHANG Tong ZHANG Yong YANG Jin-kun REN Chao SONG Peng 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1605-1619,共15页
The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs... The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs RFPA(Rock Failure Process Analysis)software to establish a calculation model of constant resistance and large deformation(CRLD)anchorages and analyzes the effects of different support methods and pre-stress levels on rockburst.We simulate the process of tunnel rockburst disasters and find that ordinary anchor support incurs rockburst on the right arch waist and arch top,forming a V-shaped explosion pit.CRLD anchor support has several advantages in rockburst control,such as more uniform stress distribution in the surrounding rock,a uniform distribution of plastic zones,less noticeable damage to the tunnel,and effective control of the arch top displacement.The effectiveness of the CRLD anchor support under varying pre-stress conditions shows that a higher prestress results in a smaller plastic zone of the surrounding rock and arch top displacement and a lower number of acoustic emission signals,which better explains the excavation compensation effect.Moreover,adding long anchorages in the deep surrounding rock area can better control rockburst and reduce surrounding rock deformation.Based on these findings,we propose a comprehensive control system that combines long and short anchorages and provides the optimal scheme based on calculations.Therefore,by using high-prestress CRLD anchor support and the combination of long and short anchorages at critical positions,we can enhance the integrity of the surrounding rock,effectively absorb the energy released by the surrounding rock deformation,and reduce the incidence of rockburst disasters. 展开更多
关键词 tunnel ROCKBURST RFPA Constant Resistance and large Deformation anchor cable Long and short cable coupling support.
下载PDF
Stability Analysis of Large Section Rocky Tunnel Support Structure
2
作者 Chaofan Si Jinhai Gao Yahui Li 《World Journal of Engineering and Technology》 2023年第2期234-245,共12页
In order to study the stress characteristics of the initial support and secondary lining of the large section tunnel and to solve the problem of secondary lining cracking during operation. Taking the large section tun... In order to study the stress characteristics of the initial support and secondary lining of the large section tunnel and to solve the problem of secondary lining cracking during operation. Taking the large section tunnel in Zihong village, Qi County as the research object, a numerical simulation method was used to establish a finite element model of the large section tunnel. So as to simulate and analyze the stress characteristics of the support structure of this tunnel. Through the simulation of the initial support and second lining of this large section tunnel in terms of displacement, stress, plastic zone damage and anchor shaft force, the results show that as the excavation progresses, the stress and displacement on the surface of the newly excavated tunnel profile is faster, especially at the side walls and arch footings, the stress and displacement values are slightly larger than other characteristic points, but the final values are stable and converge, and are basically consistent with the field monitoring results, which indicates that this support system is basically in stable state. Therefore, during the tunnel excavation and support process, special attention should be paid to the stability of the sidewalls and footings, and the results of this study will be of great practical significance for tunnel construction and maintenance. 展开更多
关键词 large Section tunnel Initial Support Secondary Lining Numerical Simulation STABILITY
下载PDF
Stability evaluation method of large cross-section tunnel considering modification of thickness-span ratio in mechanized operation
3
作者 Junru Zhang Yumeng Liu Bo Yan 《Railway Sciences》 2023年第2期197-210,共14页
Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huangg... Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels. 展开更多
关键词 large cross-section tunnel Mechanized operation tunnel stability Thickness-span ratio Basic quality index of rock Safety factor DEPTH SPAN
下载PDF
Excavation compensation theory and supplementary technology system for large deformation disasters 被引量:4
4
作者 Manchao He Qiru Sui Zhigang Tao 《Deep Underground Science and Engineering》 2023年第2期105-128,共24页
Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters ... Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control. 展开更多
关键词 energy engineering excavation compensation large deformation NPR anchor cable slope engineering traffic tunnel engineering
下载PDF
Compensation excavation method control for large deformation disaster of mountain soft rock tunnel 被引量:15
5
作者 Manchao He Qiru Sui +2 位作者 Mengnan Li Zhijiao Wang Zhigang Tao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期951-963,共13页
In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the lar... In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels. 展开更多
关键词 tunnel engineering Excavation method Soft rock large deformation Compensation excavation method
下载PDF
Numerical modeling of large deformation and nonlinear frictional contact of excavation boundary of deep soft rock tunnel 被引量:5
6
作者 Xin Chen Hongyun Guo +2 位作者 Pei Zhao Xi Peng Shizhi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期421-428,共8页
Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During t... Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model. 展开更多
关键词 deep soft rock tunnel large deformation contact problem Lagrange multiplier method
下载PDF
Pressure from surrounding rock of three shallow tunnels with large section and small spacing 被引量:17
7
作者 杨小礼 金启云 马军秋 《Journal of Central South University》 SCIE EI CAS 2012年第8期2380-2385,共6页
With the increasing traffic demand, the closely built three or more tunnels with large section play a significant role in the tunnel construction. However, the interaction among tunnels has important influences on the... With the increasing traffic demand, the closely built three or more tunnels with large section play a significant role in the tunnel construction. However, the interaction among tunnels has important influences on the security and economy of tunnel engineering, and the calculation of pressure from the surrounding rock during the excavation is one of the problems that need to be solved urgently. Based on the practical engineering of three tunnels, the load model of three tunnels was proposed in consideration of the interaction and excavation sequence between tunnels. In comparison with the load model of single tunnel, the construction mechanical characteristics of the three tunnels were analyzed. The results show that the rock pressure of three tunnels calculated by the current tunnel design code is not reliable, and the interaction force increases with the spacing between tunnels. 展开更多
关键词 隧道围岩 大断面隧道 岩石压力 小间距 相互作用力 浅埋 隧道工程 负荷模型
下载PDF
In Situ Experiments on Supporting Load Effect of Large-span Deep Tunnels in Hard Rock 被引量:4
8
作者 HE Ben-guo ZHU Yong-quan +2 位作者 SUN Ming-lei LIU Hong-yan ZHANG Zhi-qiang 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1125-1136,共12页
A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for... A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code. 展开更多
关键词 深埋隧道 大跨度 现场试验 负载效应 高速铁路隧道 结构安全性 铁路客运专线 围岩压力
下载PDF
Development of a new type of foam concrete and its application on stability analysis of large-span soft rock tunnel 被引量:6
9
作者 王辉 陈卫忠 +2 位作者 谭贤君 田洪铭 曹俊杰 《Journal of Central South University》 SCIE EI CAS 2012年第11期3305-3310,共6页
The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and lo... The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and low ductility was introduced.And it was made as filling material of reserved deformation layer between the first lining and the second lining used in large-span soft rock tunnel.The effect of the new type of foam concrete was simulated as filling material of reserved deformation layer using numerical simulation.Through the comparison with the common large-span soft rock tunnel,the vault settlement and surrounding convergence are reduced by about 61% and 45%,respectively,after creep of 100 a.And in the second lining,the plastic zone reduces apparently and the maximum equivalent plastic strain decreases relatively.So,it can be found that the application of the new type of foam concrete as the filling material of reserved deformation layer can relieve the excessive force in second lining induced by rock creep,reduce its deformation and improve the stability of tunnel. 展开更多
关键词 泡沫混凝土 稳定性分析 软岩隧道 应用程序 大跨度 填充材料 等效塑性应变 蠕变效应
下载PDF
Failure mechanism of large-diameter shield tunnels and its effects on ground surface settlements 被引量:5
10
作者 杨宇友 李宏安 《Journal of Central South University》 SCIE EI CAS 2012年第10期2958-2965,共8页
A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field m... A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method. 展开更多
关键词 盾构隧道 失效机理 地面沉降 大直径 速度场模型 非均匀分布 有限差分法 嵌入深度
下载PDF
Intelligent optimization of the structure of the large section highway tunnel based on improved immune genetic algorithm 被引量:1
11
作者 Hai-tao Bo1,Xiao-feng Jia2,Xiao-rui Wang11.School of Civil Engineering and Mechanics,Huazhong University of Science and Technology, Wuhan 430074 2.Department of Chemistry and Bioengineering,Nanyang Institute of Technology,Nanyang 473004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第3期163-166,共4页
As in the building of deep buried long tunnels,there are complicated conditions such as great deformation,high stress,multi-variables,high non-linearity and so on,the algorithm for structure optimization and its appli... As in the building of deep buried long tunnels,there are complicated conditions such as great deformation,high stress,multi-variables,high non-linearity and so on,the algorithm for structure optimization and its application in tunnel engineering are still in the starting stage. Along with the rapid development of highways across the country,it has become a very urgent task to be tackled to carry out the optimization design of the structure of the section of the tunnel to lessen excavation workload and to reinforce the support. Artificial intelligence demonstrates an extremely strong capability of identifying,expressing and disposing such kind of multiple variables and complicated non-linear relations. In this paper,a comprehensive consideration of the strategy of the selection and updating of the concentration and adaptability of the immune algorithm is made to replace the selection mode in the original genetic algorithm which depends simply on the adaptability value. Such an algorithm has the advantages of both the immune algorithm and the genetic algorithm,thus serving the purpose of not only enhancing the individual adaptability but maintaining the individual diversity as well. By use of the identifying function of the antigen memory,the global search capability of the immune genetic algorithm is raised,thereby avoiding the occurrence of the premature phenomenon. By optimizing the structure of the section of the Huayuan tunnel,the current excavation area and support design are adjusted. A conclusion with applicable value is arrived at. At a higher computational speed and a higher efficiency,the current method is verified to have advantages in the optimization computation of the tunnel project. This also suggests that the application of the immune genetic algorithm has a practical significance to the stability assessment and informationization design of the wall rock of the tunnel. 展开更多
关键词 immune genetic algorithm tunnel super-large section OPTIMIZATION
下载PDF
Dynamic evolution in mechanical characteristics of complex supporting structures during large section tunnel construction
12
作者 Hua Jiang Jianhua Mu +3 位作者 Jinxun Zhang Yusheng Jiang Chongyang Liu Xiaoyan Zhang 《Deep Underground Science and Engineering》 2022年第2期183-201,共19页
The shallow tunnelling method(STM)often uses temporary supports to divide large section tunnels into several closed or semiclosed sections so as to share the upper load.The complex support system composed of primary a... The shallow tunnelling method(STM)often uses temporary supports to divide large section tunnels into several closed or semiclosed sections so as to share the upper load.The complex support system composed of primary and temporary supports can ensure safety during tunnel construction.Based on the large section tunnel of Beijing Subway Line 12,the mechanical characteristics of support system by the double-side-drift method(DSDM)during excavation and demolition were analyzed through numerical simulation and monitoring.The study showed that the middle cave excavation was the most critical stage of the DSDM,during which the load on the supporting structure increased significantly.The temporary vertical support bore most of the new load during middle cave excavation.During the demolition stage,the load was redistributed,which caused arch settlement and section convergence.The removal of the temporary vertical support exerted the greatest impact in this process.The lateral temporary inverted arch changed from axial compression to axial tension after the middle and lower caves were excavated.Based on the mechanical characteristics of the support system,some engineering suggestions were proposed for large section tunnel construction.These research results can provide reference for the design and construction of similar large section tunnels. 展开更多
关键词 large section tunnel mechanical characteristics on-site monitoring supporting structure the shallow tunnelling method
下载PDF
大直径盾构隧道成型质量巡检方法研究 被引量:1
13
作者 赵先琼 邓凯 +2 位作者 张亚洲 马英博 夏毅敏 《工程科学学报》 EI CSCD 北大核心 2024年第2期365-375,共11页
针对因工业应用成本限制,中、小盾构隧道成型质量无损检测技术迁移至大直径盾构隧道时精度、速度折损严重的问题,以巡检车为载体,集成二维激光扫描仪、编码器和计算机等设备,研制了大盾构隧道成型质量巡检车,并提出一种基于数字图像的... 针对因工业应用成本限制,中、小盾构隧道成型质量无损检测技术迁移至大直径盾构隧道时精度、速度折损严重的问题,以巡检车为载体,集成二维激光扫描仪、编码器和计算机等设备,研制了大盾构隧道成型质量巡检车,并提出一种基于数字图像的盾构质量非对称巡检方法.分析大直径盾构的施工环境,滤除地面、车体点云,并采用邻域向量法提取中轴线,建立隧道中心坐标系.偏心布置巡检路线,按照点云密度将采样点云分为稠密侧和稀疏侧点云,通过不同方法实现对管片接缝特征的拾取:将稠密侧点云绕中轴线展开为二维灰度图像,并通过缩放、归一化、梯度阈值分割等方法实现接缝图像分割;基于直线方程对接缝进行分类,结合管片结构、布置点位,推导出稀疏侧接缝与稠密侧接缝的线性分布公式,间接拾取稀疏侧接缝.根据接缝特征点计算两侧管片边缘点云簇,计算管片错台量;剔除接缝点云簇,使用最小二乘法拟合隧道点云,计算隧道椭圆度.最后在某大直径盾构隧道进行巡检试验,试验结果表明:成型质量巡检车在十四米盾构隧道中巡检速度为3 km·h-1,与传统方法的错台量检测偏差小于2 mm,椭圆度检测偏差小于0.1%,可以满足大直径盾构隧道成型质量巡检的高速度、高精度、低成本需求. 展开更多
关键词 大直径盾构隧道 激光扫描 阈值分割 错台检测 变形检测
下载PDF
大凉山背斜核部区隧道初支大变形机理与控制 被引量:1
14
作者 梁斌 陈诺 +1 位作者 苗景川 李文杰 《河南科技大学学报(自然科学版)》 北大核心 2024年第2期78-86,M0007,共10页
针对大凉山2号公路隧道穿越高地应力背斜核心区域,隧道易发生初支大变形、坍塌、钢架扭曲等问题,通过现场监控量测、围岩岩性实验、理论分析、数值模拟分析和围岩接触压力监测等综合分析,研究了大凉山2号隧道背斜核部大变形成因机理。... 针对大凉山2号公路隧道穿越高地应力背斜核心区域,隧道易发生初支大变形、坍塌、钢架扭曲等问题,通过现场监控量测、围岩岩性实验、理论分析、数值模拟分析和围岩接触压力监测等综合分析,研究了大凉山2号隧道背斜核部大变形成因机理。研究表明:背斜核部玄武岩单轴抗压强度为23.31 MPa,凝灰质泥岩遇水具有一定膨胀性,给围岩变形创造了条件。由于岩层岩性不同,开挖后洞周玄武岩呈独立受弯剪梁状态。相对无水条件下,受地下水补给影响,围岩塑性区面积增加,拱腰部位较为明显。加固前,拱顶沉降量最大达470 mm,拱腰最大收敛值为844 mm,围岩接触压力为523.47 kPa。采用双层小导管+中台阶临时支撑+边墙临时支撑的“主动适应+强支撑”的综合处置方式,隧道拱顶变形减少87.6%,水平收敛变形减少95%,围岩接触压力最大值降至128 kPa,隧道变形得到有效控制。 展开更多
关键词 隧道工程 背斜核部区 大变形机理 现场监测 岩性实验 数值模拟
下载PDF
大直径盾构隧道纵向刚度增强措施研究 被引量:1
15
作者 叶飞 李思翰 +2 位作者 刘畅 温小宝 韩兴博 《地下空间与工程学报》 CSCD 北大核心 2024年第3期959-968,共10页
为研究不同环缝接头结构对盾构隧道纵向刚度的增强效果,采用等效连续化模型计算得到断面直径对隧道纵向拉压、纵向抗剪和纵向抗弯刚度的影响规律,将隧道纵向刚度增强措施与管片环缝接头结构相联系,采用数值模拟深入探究了9种环缝接头结... 为研究不同环缝接头结构对盾构隧道纵向刚度的增强效果,采用等效连续化模型计算得到断面直径对隧道纵向拉压、纵向抗剪和纵向抗弯刚度的影响规律,将隧道纵向刚度增强措施与管片环缝接头结构相联系,采用数值模拟深入探究了9种环缝接头结构的力学性能,对比得到增强隧道纵向刚度效果最优的环缝接头结构。结果表明:直径对纵向拉压和纵向抗弯刚度影响较小,对纵向抗剪刚度影响较大;环缝接头刚度增强措施能够显著减小管片位移,提高隧道纵向刚度,提升效果为:斜螺栓>弯螺栓,定位榫>剪力销>凹凸榫;螺栓型式和纵向刚度增强措施均对螺栓最大剪切应力有较大影响,竖向荷载下受螺栓型式影响较大,水平向荷载下受管片环缝接头刚度增强措施影响较大;结合经济性和有效性,当接头螺栓为弯螺栓时,设置定位榫是一种相对较优的选择。 展开更多
关键词 大直径盾构 纵向刚度 管片环缝接头 刚度增强措施
下载PDF
极高地应力软岩隧道非对称变形机理及支护优化研究 被引量:2
16
作者 陈志敏 赵吉万 +3 位作者 龚军 陈宇飞 李增印 孙胜旗 《防灾减灾工程学报》 CSCD 北大核心 2024年第1期109-119,共11页
针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力... 针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力学特性室内试验研究及地应力实测情况,探究了非对称大变形形成机理并提出针对性的支护结果优化方案。结果表明:高地应力层状软岩隧道围岩不对称变形是在岩层倾角α、最大水平主应力与隧道轴线夹角β和岩层夹角γ、围岩岩性和地下水综合作用下的大变形,围岩不对称部位由以上几种因素共同决定;当主应力σ1与隧道轴线既不垂直也不平行时,会产生挤压性偏压构造水平地应力,使隧道横断面侧向受力不对称,发生偏压性非对称大变形;通过改变锚杆的布设方式、提高超前注浆小导管的长度和刚度、喷射临时封闭、在防水板与喷射砼间增加高密度橡塑海绵板缓冲层等措施,可以有效的减少变形量,防止围岩因开挖扰动而松动和坍塌。 展开更多
关键词 极高地应力 软岩隧道 非对称变形 支护优化
下载PDF
内河中游区大型沉管隧道建造关键新技术——以襄阳鱼梁洲隧道为例
17
作者 王勇 徐国平 +5 位作者 李勇 刘明虎 孙晓伟 冯先导 任耀谱 许昱 《隧道建设(中英文)》 CSCD 北大核心 2024年第4期810-825,共16页
为解决内河中游区沉管隧道建造面临的河床冲刷强、强透水地层深厚、防洪要求高等问题,依托襄阳鱼梁洲沉管隧道工程,通过工程调研、理论分析、物模试验、数值模拟、现场测试等手段,对内河沉管隧道建造关键技术进行创新及应用,首次形成如... 为解决内河中游区沉管隧道建造面临的河床冲刷强、强透水地层深厚、防洪要求高等问题,依托襄阳鱼梁洲沉管隧道工程,通过工程调研、理论分析、物模试验、数值模拟、现场测试等手段,对内河沉管隧道建造关键技术进行创新及应用,首次形成如下创新成果:1)提出沉管隧道冲刷安全量化评价方法,给出沉管结构横向稳定性安全系数等5项评价指标及其评价标准体系,填补了沉管隧道防冲安全量化评价方法的空白;2)研发利用管周摩擦力抵抗止水带回弹力的摩擦止推型最终接头,解决常规陆域接头需设置大型圬工结构的问题;3)研发并量产可满足0.3 MPa外水压水密性、100年设计使用寿命的沉管接头外侧止水带国产化产品,其百年应力松弛衰减率仅25.5%,预测使用寿命144年,使中国实现沉管隧道全产业链技术的国产化;4)提出整体式管节不设后浇带全断面顺浇预制工法,实现沉管结构预制工效提高52%、结构接缝减少61%、浇筑裂缝减少60%;5)在内河沉管隧道中采用先铺卵石垫层基础,并研发出全浮式高精度先铺卵石基床整平船;6)研发应用沉管无焊接装配式端封门和柔性水袋压载水系统,可实现舾装设施的便捷循环使用和施工效率的提升。 展开更多
关键词 大型沉管隧道建造 内河中游区 襄阳鱼梁洲隧道 强冲刷 砂卵石
下载PDF
施工期铁路隧道软岩大变形快速分级方法研究
18
作者 张广泽 贾哲强 +3 位作者 罗良成 王栋 任利 袁传保 《铁道工程学报》 EI CSCD 北大核心 2024年第2期20-25,共6页
研究目的:西南复杂艰险山区等典型构造活跃区的构造地质环境复杂,断裂、褶皱发育,构造应力显著,铁路隧道围岩大变形问题突出,随着构造活跃区铁路隧道工程日益增加,将面临更严峻的大变形问题。在隧道施工开挖过程中,快速判别可能发生的... 研究目的:西南复杂艰险山区等典型构造活跃区的构造地质环境复杂,断裂、褶皱发育,构造应力显著,铁路隧道围岩大变形问题突出,随着构造活跃区铁路隧道工程日益增加,将面临更严峻的大变形问题。在隧道施工开挖过程中,快速判别可能发生的大变形等级,有利于施工工法的调整和支护措施的制定。研究结论:(1)深入分析构造软岩大变形工程案例,以施工期掌子面开挖揭示围岩分级数据为基准,结合区域地应力、岩层厚度、岩性等大变形关键控制因素,快速判定大变形等级,提出了施工期铁路隧道围岩大变形快速分级方法,并结合典型工程案例对分级方法的有效性和准确性进行了验证;(2)本研究成果可应用于施工期间铁路隧道开挖围岩大变形的快速分级,适用于工程地质勘察领域。 展开更多
关键词 构造活跃区 铁路隧道 软岩大变形 快速分级
下载PDF
考虑湿度应力的深部软岩隧道大变形控制研究
19
作者 张建俊 王洋 +2 位作者 孙闯 裴文强 张馨 《地下空间与工程学报》 CSCD 北大核心 2024年第1期230-240,共11页
为探明深部高地应力软岩隧道大变形产生机理,制定适应大变形控制措施,以月直山隧道为工程依托,首先明确求解围岩形变压力与松动压力的Kastner与Caquot公式,基于岩体弹塑性力学与连续介质理论建立围岩湿度应力解析解,采用收敛-约束法绘制... 为探明深部高地应力软岩隧道大变形产生机理,制定适应大变形控制措施,以月直山隧道为工程依托,首先明确求解围岩形变压力与松动压力的Kastner与Caquot公式,基于岩体弹塑性力学与连续介质理论建立围岩湿度应力解析解,采用收敛-约束法绘制出3种围岩应力作用下围岩与初期支护特征曲线,分析断面变形过程中围岩与支护结构相互作用规律及3种应力占比演化规律。分别以混凝土与型钢钢架作为二衬支护结构对月直山隧道围岩稳定性进行计算分析,明确考虑湿度应力与松动压力条件下隧道二衬最优支护时机与支护参数,以支护结构安全系数FS评判出最优支护方案并对隧道软岩大变形进行治理。结果表明:当围岩径向位移达到550 mm时,仅考虑形变压力Pi时围岩对支护结构的压力P仅为0.813 MPa,考虑湿度应力Pw与松动压力Pa时P增大为1.372 MPa,湿度应力与松动应力总占比达40.7%,仅考虑形变压力而设计的支护结构不满足围岩稳定性要求;根据“卸压支护”理念,确定以“位移释放峰值upeak=0.325 m”与“间距d=0.7 m”作为增设第二层钢架的最佳支护时机与支护参数,现场二次钢架设置24天后使围岩变形收敛于50.8 mm,围岩大变形得到控制,研究成果可为今后相关隧道工程设计与施工提供参考。 展开更多
关键词 隧道工程 软岩大变形 湿度应力 收敛-约束法 支护优化
下载PDF
双线大直径输水隧道建设对既有桥梁及桩基的影响分析
20
作者 杨杰 张帅超 +2 位作者 马春辉 秦全乐 周永林 《水资源与水工程学报》 CSCD 北大核心 2024年第3期154-163,172,共11页
为准确分析双线大直径输水隧道下穿对既有桥梁结构的影响,构建桥梁-地层-桩基-盾构隧道高精度数值仿真模型,对桥梁桩基结构及盾构过程进行精细化模拟,结合基于智能算法的土层参数反演模型,获取更接近真实情况的土层参数,以提高数值模拟... 为准确分析双线大直径输水隧道下穿对既有桥梁结构的影响,构建桥梁-地层-桩基-盾构隧道高精度数值仿真模型,对桥梁桩基结构及盾构过程进行精细化模拟,结合基于智能算法的土层参数反演模型,获取更接近真实情况的土层参数,以提高数值模拟精度。结果表明:输水隧道盾构开挖引起的地表最大沉降量为15.01 mm,基于反演的地表变形计算结果与实际监测值的误差减少约70%;盾构隧道双线开挖会引起地表二次沉降变形,两条盾构隧道中间区域的地表二次沉降量最大,约占总沉降量的60%,最大二次沉降量为5.06 mm;隧道两侧的桩基受到影响较大,最大位移为10.03 mm,位于桩基顶部,而隧道开挖对桩基内应力分布影响较小,可以认为无影响。 展开更多
关键词 输水隧道 桥梁 桩基响应 反演模型 大直径盾构 变形监测
下载PDF
上一页 1 2 191 下一页 到第
使用帮助 返回顶部