期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Evolution and Prospects of Foundation Models: From Large Language Models to Large Multimodal Models 被引量:1
1
作者 Zheyi Chen Liuchang Xu +5 位作者 Hongting Zheng Luyao Chen Amr Tolba Liang Zhao Keping Yu Hailin Feng 《Computers, Materials & Continua》 SCIE EI 2024年第8期1753-1808,共56页
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ... Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field. 展开更多
关键词 Artificial intelligence large language models large multimodal models foundation models
下载PDF
DeBERTa-GRU: Sentiment Analysis for Large Language Model
2
作者 Adel Assiri Abdu Gumaei +2 位作者 Faisal Mehmood Touqeer Abbas Sami Ullah 《Computers, Materials & Continua》 SCIE EI 2024年第6期4219-4236,共18页
Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whe... Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques. 展开更多
关键词 DeBERTa GRU Naive Bayes LSTM sentiment analysis large language model
下载PDF
Enhancing Relational Triple Extraction in Specific Domains:Semantic Enhancement and Synergy of Large Language Models and Small Pre-Trained Language Models
3
作者 Jiakai Li Jianpeng Hu Geng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2481-2503,共23页
In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e... In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach. 展开更多
关键词 Relational triple extraction semantic interaction large language models data augmentation specific domains
下载PDF
Evaluating the role of large language models in inflammatory bowel disease patient information
4
作者 Eun Jeong Gong Chang Seok Bang 《World Journal of Gastroenterology》 SCIE CAS 2024年第29期3538-3540,共3页
This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like r... This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications. 展开更多
关键词 Crohn’s disease Ulcerative colitis Inflammatory bowel disease Chat generative pre-trained transformer large language model Artificial intelligence
下载PDF
A large language model-powered literature review for high-angle annular dark field imaging
5
作者 Wenhao Yuan Cheng Peng Qian He 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期76-81,共6页
High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemic... High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes. 展开更多
关键词 large language models high-angle annular dark field imaging deep learning
下载PDF
Large language models in laparoscopic surgery: A transformative opportunity
6
作者 Partha Pratim Ray 《Laparoscopic, Endoscopic and Robotic Surgery》 2024年第4期174-180,共7页
This opinion paper explores the transformative potential of large language models(LLMs)in laparoscopic surgery and argues for their integration to enhance surgical education,decision support,reporting,and patient care... This opinion paper explores the transformative potential of large language models(LLMs)in laparoscopic surgery and argues for their integration to enhance surgical education,decision support,reporting,and patient care.LLMs can revolutionize surgical education by providing personalized learning experiences and accelerating skill acquisition.Intelligent decision support systems powered by LLMs can assist surgeons in making complex decisions,optimizing surgical workflows,and improving patient outcomes.Moreover,LLMs can automate surgical reporting and generate personalized patient education materials,streamlining documentation and improving patient engagement.However,challenges such as data scarcity,surgical semantic capture,real-time inference,and integration with existing systems need to be addressed for successful LLM integration.The future of laparoscopic surgery lies in the seamless integration of LLMs,enabling autonomous robotic surgery,predictive surgical planning,intraoperative decision support,virtual surgical assistants,and continuous learning.By harnessing the power of LLMs,laparoscopic surgery can be transformed,empowering surgeons and ultimately benefiting patients. 展开更多
关键词 large language model Artificial intelligence Generative artificial intelligence LAPAROSCOPY SURGERY
下载PDF
LKPNR: Large Language Models and Knowledge Graph for Personalized News Recommendation Framework
7
作者 Hao Chen Runfeng Xie +4 位作者 Xiangyang Cui Zhou Yan Xin Wang Zhanwei Xuan Kai Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4283-4296,共14页
Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news text... Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR. 展开更多
关键词 large language models news recommendation knowledge graphs(KG)
下载PDF
Potential use of large language models for mitigating students’problematic social media use:ChatGPT as an example
8
作者 Xin-Qiao Liu Zi-Ru Zhang 《World Journal of Psychiatry》 SCIE 2024年第3期334-341,共8页
The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate p... The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate problematic social media,and their potential is yet to be fully realized.Emerging large language models(LLMs)are becoming increasingly popular for providing information and assistance to people and are being applied in many aspects of life.In mitigating problematic social media use,LLMs such as ChatGPT can play a positive role by serving as conversational partners and outlets for users,providing personalized information and resources,monitoring and intervening in problematic social media use,and more.In this process,we should recognize both the enormous potential and endless possibilities of LLMs such as ChatGPT,leveraging their advantages to better address problematic social media use,while also acknowledging the limitations and potential pitfalls of ChatGPT technology,such as errors,limitations in issue resolution,privacy and security concerns,and potential overreliance.When we leverage the advantages of LLMs to address issues in social media usage,we must adopt a cautious and ethical approach,being vigilant of the potential adverse effects that LLMs may have in addressing problematic social media use to better harness technology to serve individuals and society. 展开更多
关键词 Problematic use of social media Social media large language models ChatGPT Chatbots
下载PDF
Evaluating Privacy Leakage and Memorization Attacks on Large Language Models (LLMs) in Generative AI Applications
9
作者 Harshvardhan Aditya Siddansh Chawla +6 位作者 Gunika Dhingra Parijat Rai Saumil Sood Tanmay Singh Zeba Mohsin Wase Arshdeep Bahga Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第5期421-447,共27页
The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Infor... The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Information (PII) and other confidential or protected information that may have been memorized during training, specifically during a fine-tuning or customization process. We describe different black-box attacks from potential adversaries and study their impact on the amount and type of information that may be recovered from commonly used and deployed LLMs. Our research investigates the relationship between PII leakage, memorization, and factors such as model size, architecture, and the nature of attacks employed. The study utilizes two broad categories of attacks: PII leakage-focused attacks (auto-completion and extraction attacks) and memorization-focused attacks (various membership inference attacks). The findings from these investigations are quantified using an array of evaluative metrics, providing a detailed understanding of LLM vulnerabilities and the effectiveness of different attacks. 展开更多
关键词 large language Models PII Leakage Privacy Memorization OVERFITTING Membership Inference Attack (MIA)
下载PDF
Security Vulnerability Analyses of Large Language Models (LLMs) through Extension of the Common Vulnerability Scoring System (CVSS) Framework
10
作者 Alicia Biju Vishnupriya Ramesh Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第5期340-358,共19页
Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, a... Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, and more. However, their widespread usage emphasizes the critical need to enhance their security posture to ensure the integrity and reliability of their outputs and minimize harmful effects. Prompt injections and training data poisoning attacks are two of the most prominent vulnerabilities in LLMs, which could potentially lead to unpredictable and undesirable behaviors, such as biased outputs, misinformation propagation, and even malicious content generation. The Common Vulnerability Scoring System (CVSS) framework provides a standardized approach to capturing the principal characteristics of vulnerabilities, facilitating a deeper understanding of their severity within the security and AI communities. By extending the current CVSS framework, we generate scores for these vulnerabilities such that organizations can prioritize mitigation efforts, allocate resources effectively, and implement targeted security measures to defend against potential risks. 展开更多
关键词 Common Vulnerability Scoring System (CVSS) large language Models (LLMs) DALL-E Prompt Injections Training Data Poisoning CVSS Metrics
下载PDF
Large Language Model Based Semantic Parsing for Intelligent Database Query Engine
11
作者 Zhizhong Wu 《Journal of Computer and Communications》 2024年第10期1-13,共13页
With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enha... With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enhance database query systems, enabling more intuitive and semantic query mechanisms. Our model leverages LLM’s deep learning architecture to interpret and process natural language queries and translate them into accurate database queries. The system integrates an LLM-powered semantic parser that translates user input into structured queries that can be understood by the database management system. First, the user query is pre-processed, the text is normalized, and the ambiguity is removed. This is followed by semantic parsing, where the LLM interprets the pre-processed text and identifies key entities and relationships. This is followed by query generation, which converts the parsed information into a structured query format and tailors it to the target database schema. Finally, there is query execution and feedback, where the resulting query is executed on the database and the results are returned to the user. The system also provides feedback mechanisms to improve and optimize future query interpretations. By using advanced LLMs for model implementation and fine-tuning on diverse datasets, the experimental results show that the proposed method significantly improves the accuracy and usability of database queries, making data retrieval easy for users without specialized knowledge. 展开更多
关键词 Semantic Query large language Models Intelligent Database Natural language Processing
下载PDF
Enhancing Orthopedic Knowledge Assessments:The Performance of Specialized Generative Language Model Optimization
12
作者 Hong ZHOU Hong-lin WANG +11 位作者 Yu-yu DUAN Zi-neng YAN Rui LUO Xiang-xin LV Yi XIE Jia-yao ZHANG Jia-ming YANG Ming-di XUE Ying FANG Lin LU Peng-ran LIU Zhe-wei YE 《Current Medical Science》 SCIE CAS 2024年第5期1001-1005,共5页
Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the applic... Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields. 展开更多
关键词 artificial intelligence large language models generative articial intelligence ORTHOPEDICS
下载PDF
Smaller & Smarter: Score-Driven Network Chaining of Smaller Language Models
13
作者 Gunika Dhingra Siddansh Chawla +1 位作者 Vijay K. Madisetti Arshdeep Bahga 《Journal of Software Engineering and Applications》 2024年第1期23-42,共20页
With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily meas... With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study. 展开更多
关键词 large language Models (LLMs) Smaller language Models (SLMs) FINANCE NETWORKING Supervisor Model Scoring Function
下载PDF
The impact of ChatGPT on foreign language teaching and learning: Opportunities in education and research 被引量:8
14
作者 Wilson Cheong Hin Hong 《教育技术与创新》 2023年第1期37-45,共9页
The revolutionary online application ChatGPT has brought immense concerns to the education field.Foreign language teachers being some of those most reliant on writing assessments were among the most anxious,exacerbate... The revolutionary online application ChatGPT has brought immense concerns to the education field.Foreign language teachers being some of those most reliant on writing assessments were among the most anxious,exacerbated by the extensive media coverage about the much-fantasized functionality of the chatbot.Hence,the article starts by elucidating the mechanisms,functions and common misconceptions about ChatGPT.Issues and risks associated with its usage are discussed,followed by an in-depth discussion of how the chatbot can be harnessed by learners and teachers.It is argued that ChatGPT offers major opportunities for teachers and education institutes to improve second/foreign language teaching and assessments,which similarly provided researchers with an array of research opportunities,especially towards a more personalized learning experience. 展开更多
关键词 large language Model second language education flip classroom personalized learning formative assessment
下载PDF
Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning:results,limitations,and potential
15
作者 Qing Lyu Josh Tan +5 位作者 Michael E.Zapadka Janardhana Ponnatapura Chuang Niu Kyle J.Myers Ge Wang Christopher T.Whitlow 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期109-118,共10页
The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities.In this study,we investigate the feasibility of using ChatGPT in experiments on tran... The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities.In this study,we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare.Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study.According to the evaluation by radiologists,ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation.In terms of the suggestions provided by ChatGPT,they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms,and for about 37%of 138 cases in total ChatGPT offers specific suggestions based on findings in the report.ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information,which can be mitigated using a more detailed prompt.Furthermore,ChatGPT results are compared with a newly released large model GPT-4,showing that GPT-4 can significantly improve the quality of translated reports.Our results show that it is feasible to utilize large language models in clinical education,and further efforts are needed to address limitations and maximize their potential. 展开更多
关键词 Artificial intelligence large language model ChatGPT Radiology report Patient education
下载PDF
May ChatGPT be a tool producing medical information for common inflammatory bowel disease patients’questions?An evidencecontrolled analysis 被引量:2
16
作者 Antonietta Gerarda Gravina Raffaele Pellegrino +6 位作者 Marina Cipullo Giovanna Palladino Giuseppe Imperio Andrea Ventura Salvatore Auletta Paola Ciamarra Alessandro Federico 《World Journal of Gastroenterology》 SCIE CAS 2024年第1期17-33,共17页
Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including pa... Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed. 展开更多
关键词 Crohn’s disease Ulcerative colitis Inflammatory bowel disease Chat Generative Pre-trained Transformer large language model Artificial intelligence
下载PDF
MOSS:An Open Conversational Large Language Model 被引量:1
17
作者 Tianxiang Sun Xiaotian Zhang +21 位作者 Zhengfu He Peng Li Qinyuan Cheng Xiangyang Liu Hang Yan Yunfan Shao Qiong Tang Shiduo Zhang Xingjian Zhao Ke Chen Yining Zheng Zhejian Zhou Ruixiao Li Jun Zhan Yunhua Zhou Linyang Li Xiaogui Yang Lingling Wu Zhangyue Yin Xuanjing Huang Yu-Gang Jiang Xipeng Qiu 《Machine Intelligence Research》 EI CSCD 2024年第5期888-905,共18页
Conversational large language models(LLMs)such as ChatGPT and GPT-4 have recently exhibited remarkable capabilities across various domains,capturing widespread attention from the public.To facilitate this line of rese... Conversational large language models(LLMs)such as ChatGPT and GPT-4 have recently exhibited remarkable capabilities across various domains,capturing widespread attention from the public.To facilitate this line of research,in this paper,we report the development of MOSS,an open-sourced conversational LLM that contains 16 B parameters and can perform a variety of instructions in multi-turn interactions with humans.The base model of MOSS is pre-trained on large-scale unlabeled English,Chinese,and code data.To optimize the model for dialogue,we generate 1.1 M synthetic conversations based on user prompts collected through our earlier versions of the model API.We then perform preference-aware training on preference data annotated from AI feedback.Evaluation results on real-world use cases and academic benchmarks demonstrate the effectiveness of the proposed approaches.In addition,we present an effective practice to augment MOSS with several external tools.Through the development of MOSS,we have established a complete technical roadmap for large language models from pre-training,supervised fine-tuning to alignment,verifying the feasibility of chatGPT under resource-limited conditions and providing a reference for both the academic and industrial communities.Model weights and code are publicly available at https://github.com/OpenMOSS/MOSS. 展开更多
关键词 large language models natural language processing pre-training ALIGNMENT chatGPT MOSS
原文传递
Can ChatGPT evaluate research quality?
18
作者 Mike Thelwall 《Journal of Data and Information Science》 CSCD 2024年第2期1-21,共21页
Purpose:Assess whether ChatGPT 4.0 is accurate enough to perform research evaluations on journal articles to automate this time-consuming task.Design/methodology/approach:Test the extent to which ChatGPT-4 can assess ... Purpose:Assess whether ChatGPT 4.0 is accurate enough to perform research evaluations on journal articles to automate this time-consuming task.Design/methodology/approach:Test the extent to which ChatGPT-4 can assess the quality of journal articles using a case study of the published scoring guidelines of the UK Research Excellence Framework(REF)2021 to create a research evaluation ChatGPT.This was applied to 51 of my own articles and compared against my own quality judgements.Findings:ChatGPT-4 can produce plausible document summaries and quality evaluation rationales that match the REF criteria.Its overall scores have weak correlations with my self-evaluation scores of the same documents(averaging r=0.281 over 15 iterations,with 8 being statistically significantly different from 0).In contrast,the average scores from the 15 iterations produced a statistically significant positive correlation of 0.509.Thus,averaging scores from multiple ChatGPT-4 rounds seems more effective than individual scores.The positive correlation may be due to ChatGPT being able to extract the author’s significance,rigour,and originality claims from inside each paper.If my weakest articles are removed,then the correlation with average scores(r=0.200)falls below statistical significance,suggesting that ChatGPT struggles to make fine-grained evaluations.Research limitations:The data is self-evaluations of a convenience sample of articles from one academic in one field.Practical implications:Overall,ChatGPT does not yet seem to be accurate enough to be trusted for any formal or informal research quality evaluation tasks.Research evaluators,including journal editors,should therefore take steps to control its use.Originality/value:This is the first published attempt at post-publication expert review accuracy testing for ChatGPT. 展开更多
关键词 ChatGPT large language Models LLM Research Excellence Framework REF 2021 Research quality Research assessment
下载PDF
A comprehensive review of existing corpora and methods for creating annotated corpora for event extraction tasks
19
作者 Mohd Hafizul Afifi Abdullah Norshakirah Aziz +3 位作者 Said Jadid Abdulkadir Kashif Hussain Hitham Alhussian Noureen Talpur 《Journal of Data and Information Science》 CSCD 2024年第4期196-238,共43页
Purpose:The purpose of this study is to serve as a comprehensive review of the existing annotated corpora.This review study aims to provide information on the existing annotated corpora for event extraction,which are ... Purpose:The purpose of this study is to serve as a comprehensive review of the existing annotated corpora.This review study aims to provide information on the existing annotated corpora for event extraction,which are limited but essential for training and improving the existing event extraction algorithms.In addition to the primary goal of this study,it provides guidelines for preparing an annotated corpus and suggests suitable tools for the annotation task.Design/methodology/approach:This study employs an analytical approach to examine available corpus that is suitable for event extraction tasks.It offers an in-depth analysis of existing event extraction corpora and provides systematic guidelines for researchers to develop accurate,high-quality corpora.This ensures the reliability of the created corpus and its suitability for training machine learning algorithms.Findings:Our exploration reveals a scarcity of annotated corpora for event extraction tasks.In particular,the English corpora are mainly focused on the biomedical and general domains.Despite the issue of annotated corpora scarcity,there are several high-quality corpora available and widely used as benchmark datasets.However,access to some of these corpora might be limited owing to closed-access policies or discontinued maintenance after being initially released,rendering them inaccessible owing to broken links.Therefore,this study documents the available corpora for event extraction tasks.Research limitations:Our study focuses only on well-known corpora available in English and Chinese.Nevertheless,this study places a strong emphasis on the English corpora due to its status as a global lingua franca,making it widely understood compared to other languages.Practical implications:We genuinely believe that this study provides valuable knowledge that can serve as a guiding framework for preparing and accurately annotating events from text corpora.It provides comprehensive guidelines for researchers to improve the quality of corpus annotations,especially for event extraction tasks across various domains.Originality/value:This study comprehensively compiled information on the existing annotated corpora for event extraction tasks and provided preparation guidelines. 展开更多
关键词 Information extraction Event extraction Text mining large language model Natural language processing
下载PDF
FAIR Enough:Develop and Assess a FAIR-Compliant Dataset for Large Language Model Training?
20
作者 Shaina Raza Shardul Ghuge +2 位作者 Chen Ding Elham Dolatabadi Deval Pandya 《Data Intelligence》 EI 2024年第2期559-585,共27页
The rapid evolution of Large Language Models(LLMs) highlights the necessity for ethical considerations and data integrity in AI development, particularly emphasizing the role of FAIR(Findable, Accessible, Interoperabl... The rapid evolution of Large Language Models(LLMs) highlights the necessity for ethical considerations and data integrity in AI development, particularly emphasizing the role of FAIR(Findable, Accessible, Interoperable, Reusable) data principles. While these principles are crucial for ethical data stewardship, their specific application in the context of LLM training data remains an under-explored area. This research gap is the focus of our study, which begins with an examination of existing literature to underline the importance of FAIR principles in managing data for LLM training. Building upon this, we propose a novel frame-work designed to integrate FAIR principles into the LLM development lifecycle. A contribution of our work is the development of a comprehensive checklist intended to guide researchers and developers in applying FAIR data principles consistently across the model development process. The utility and effectiveness of our frame-work are validated through a case study on creating a FAIR-compliant dataset aimed at detecting and mitigating biases in LLMs. We present this framework to the community as a tool to foster the creation of technologically advanced, ethically grounded, and socially responsible AI models. 展开更多
关键词 Responsible Al large language models FAIR data principles Ethical Al Biases
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部