Currently,there is significant attention placed on the construction,management,and maintenance of large service bridges.Within the realm of bridge maintenance management,the utilization of detection and monitoring tec...Currently,there is significant attention placed on the construction,management,and maintenance of large service bridges.Within the realm of bridge maintenance management,the utilization of detection and monitoring technology is indispensable.By employing these technologies,we can effectively identify any structural defects within the bridge,promptly uncover unknown risks,proactively establish maintenance strategies,and prevent the rapid deterioration of bridge conditions.This article aims to explore the advantages of applying bridge monitoring and testing technology and to discuss various methods for implementing detection and monitoring technology throughout the construction,management,and maintenance phases of large bridges.Ultimately,this will contribute to ensuring the safe operation of large bridges.展开更多
Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper...Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper employs steel plates as energy dissipation components, and adopts a vertical free mechanism to achieve a large deformation capacity. Quasi-static tests using displacement-controlled cyclic loading and numerical analyses using a finite element program called ABAQUS are conducted to investigate the behavior of the damper, and a design methodology is proposed based on the tests and numerical analyses. Major conclusions obtained from this study are as follows: (1) the new dampers have stable hysteresis behavior under large displacements; (2) finite element analyses are able to simulate the behavior of the damper with satisfactory accuracy; and (3) simplified design methodology of the damper is effective.展开更多
Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on compariso...Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously.展开更多
The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated result...The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge.展开更多
Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Co...Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Construction Technology proposed SuperBridge800, an edge girder type UHPC cable stayed bridge with central span of 800 m, through its detailed design. The bridge is designed to be erected through the connection of precast UHPC segments. The precast UHPC segment is monolithically composed of one ribbed deck slab and edge girders at each side. The connection between the precast segments is achieved by steel bars at the edge girders and by UHPC cast-in-place wet joint at the slab. Despite of the outstanding mechanical performance of UHPC, the fabrication of large-sized members is a difficult task since UHPC hardens faster than normal concrete and requires a special curing process. Therefore, the constructability of large-sized UHPC segment should be secured to achieve SuperBridge800. Besides, the performance of the connection between segments should also be guaranteed, especially in terms of the fatigue performance of the UHPC cast-in-place joint, which constitutes a weak point. To that goal, two half-scaled UHPC segments are manufactured and the constructability is examined by fabricating a large-sized UHPC member connected with respect to the design conditions. This study conducts rolling fatigue test on the so-fabricated large-sized UHPC member. Rolling fatigue test is carried out up to 2 million cycles considering actual vehicle load at each center and quarter points of the member. The test results confirm that the service limit state is satisfied.展开更多
When the installation of cables and pipelines needs to go across rivers,bridges are usually adopted to support the cables and pipelines for crossing the rivers.The measure can make full use of the space resources and ...When the installation of cables and pipelines needs to go across rivers,bridges are usually adopted to support the cables and pipelines for crossing the rivers.The measure can make full use of the space resources and have no effect on the flow pattern of rivers.For this reason,analysis on the structural-type design of a large-span steel truss bridge specially used for cables has been performed.The numerical results indicate that the stayed-cable bridge with steel truss beam and concrete main tower has better performance and improved structural type caparisoned with that of the beam and arch bridges,and the construction of the major beam can be without the temporary support.展开更多
Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT...Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures.展开更多
Incidence and consequences of spinal cord injuries: World- wide, every year 250,000-500,000 people suffer from spinal cord injury (SCI; www.who.int, 2013). Traumatic lesions of the spinal cord lead to primary and s...Incidence and consequences of spinal cord injuries: World- wide, every year 250,000-500,000 people suffer from spinal cord injury (SCI; www.who.int, 2013). Traumatic lesions of the spinal cord lead to primary and secondary injury mechanisms, which result in axon damage, loss of signal conduction, demyelination of axons and long-lasting deficits in motor and sensory func- tion. The extent of the damage and the subsequent functional loss depend on the spinal level and the severity of the primary injury. Furthermore, pathophysiological and pathomorpholog- ical responses in acute and chronic SCI share similar but also different requirements for treatment.展开更多
In the AASHTO Guide Specifications for Seismic Bridge Design Provisions,ductile diaphragms are identified as Permissible Earthquake-Resisting Elements(EREs),designed to help resist seismic loads applied in the trans...In the AASHTO Guide Specifications for Seismic Bridge Design Provisions,ductile diaphragms are identified as Permissible Earthquake-Resisting Elements(EREs),designed to help resist seismic loads applied in the transverse direction of bridges.When adding longitudinal ductile diaphragms,a bidirectional ductile diaphragm system is created that can address seismic excitations acting along both the bridge’s longitudinal and transverse axes.This paper investigates bidirectional ductile diaphragms with Buckling Restrained Braces(BRBs)in straight multi-span bridge with simply supported floating spans.The flexibility of the substructures in the transverse and longitudinal direction of the bridge is considered.Design procedures for the bidirectional ductile diaphragms are first proposed.An analytical model of the example bridge with bidirectional ductile diaphragms,designed based on the proposed methodology,is then built in SAP2000.Pushover and nonlinear time history analyses are performed on the bridge model,and corresponding results are presented.The effect of changing the longitudinal stiffness of the bidirectional ductile diaphragms in the end spans connecting to the abutment is also investigated,in order to better understand the impact on the bridge’s dynamic performance.展开更多
Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal ri...Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal rigidity, the structural form and the corresponding foundation type of middle pylon are different from those of the ordinary steel pylon, and the complicated dynamic characteristics make the calculation quite difficult. In this article, exploration has been made in selection of similarity ratio and model materials, section simulation, restriction conditions simulation, fixing of mass blocks, fabrication scheme and testing method by taking into account different construction and working conditions such as restriction conditions and working environment of a three-pylon suspension bridge, to conduct the test experimental design of the dynamic behavior of the middle pylon, with the purpose to reveal its dynamic characteristics and make comparison and analysis with theoretical assumptions, to provide basis for anti-wind and anti-seismic design and reference for the design and research of three-pylon two-span suspension bridges in the future.展开更多
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv...Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.展开更多
This article introduces the project overview, construction goal and design philosophy of Hong Kong- Zhuhai-Macao Bridge. Based on large scale, factory production, standardization and assemble line, the innova- tive co...This article introduces the project overview, construction goal and design philosophy of Hong Kong- Zhuhai-Macao Bridge. Based on large scale, factory production, standardization and assemble line, the innova- tive concept is taken as the general principle for design with the emphasis on description of the new material, new technology, new construction method and new equipment used in the design. The application of innovative technology has provided a solid foundation and favorable guarantee for project quality and design service展开更多
To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two...To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two-dimensional finite element model under different seismic SV waves with the assumptions of vertical incidence and oblique incidence to obtain the ground motions, which are used as the excitation input on the pier foundations of the bridge with improved large mass method. The results indicate that canyon topography has significant influences on the ground motions in terms of inci- dent angle. The peak ground acceleration values vary greatly from the bottom of the canyon to the upper comers. Under ver- tical incident SV waves, at the upper comers of canyon the peak ground accelerations greatly increase; whereas the peak ground accelerations diminish at the bottom comers of canyon. Under oblique incident SV waves, the shaking of the canyon slope perpendicular to the incidence direction is much more severe than that of the opposite side of canyon. And the ground surface has been characterized by larger deformations in the case of oblique incident waves. It is also concluded that the low piers and frame of the continuous rigid frame bridge ape more sensitive to the multi-support seismic excitations than the flexible high piers. The canyon topography as well as the oblique incidence of the waves brings the continuous rigid frame bridge severe responses, which should be taken into account in bridge design.展开更多
Sutong Bridge is a cable-stayed bridge with a steel box girder and a main span of 1 088 m.The steel box girder of main span includes five portions:back span large unit,large block of pylon,standard girder,back span cl...Sutong Bridge is a cable-stayed bridge with a steel box girder and a main span of 1 088 m.The steel box girder of main span includes five portions:back span large unit,large block of pylon,standard girder,back span closure girder and middle span closure girder.Each back span large unit is fabricated by welding several deck segments together in factory,and is erected by floating crane.As navigational clearance of the main bridge is high,the traditional truss lifting device can't satisfy the requirement of domestic lifting cranes for this kind of lifting height and weight.Hence,a kind of lighter lifting device for the erection of back span large units was accepted for this bridge.In this paper,the design and use of this lifting device is introduced.The upper structure used lifting gantry to install the standard girder segment by cantilever method.Because the bridge's navigation clearance is high,and the girder segment is wide and heavy,the meteorology and hydrology condition of the bridge district is abominable,and the requirements of long cable girder side pull-in,structure and performance propose high request to the lifting gantry.In this paper,the design and use key point of long cable pull-in angle adjustment device integrate into lifting gantry is introduced.展开更多
The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is...The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is to contribute to the Flow-3D software by means of some modification and adjustment in the sediment scour model and shallow water model. An assessment of turbulence model adopted with the parameters of the Melville experiment to estimate the maximum scour-depth was performed. In the simulation results, the alternate eddy formation and shedding were repeated while the Karman vortex street formed behind the pier for the large eddy simulation LES turbulence model is more realistic in the flow phenomenon. The results of the scour development of large eddy simulation (LES) turbulence model were found to be more satisfied than the Renormalized group (RNG) turbulence model and close to the prior experiment results. The simulated scour results were significantly different with the observed data collected from previous literature in the reason of some unsuitability of meshing method in Flow-3D software.展开更多
文摘Currently,there is significant attention placed on the construction,management,and maintenance of large service bridges.Within the realm of bridge maintenance management,the utilization of detection and monitoring technology is indispensable.By employing these technologies,we can effectively identify any structural defects within the bridge,promptly uncover unknown risks,proactively establish maintenance strategies,and prevent the rapid deterioration of bridge conditions.This article aims to explore the advantages of applying bridge monitoring and testing technology and to discuss various methods for implementing detection and monitoring technology throughout the construction,management,and maintenance phases of large bridges.Ultimately,this will contribute to ensuring the safe operation of large bridges.
基金Natural Science Foundation of China under Grant Nos.51178250 and 51261120377Tsinghua University of China under Grant No.2010Z01001
文摘Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper employs steel plates as energy dissipation components, and adopts a vertical free mechanism to achieve a large deformation capacity. Quasi-static tests using displacement-controlled cyclic loading and numerical analyses using a finite element program called ABAQUS are conducted to investigate the behavior of the damper, and a design methodology is proposed based on the tests and numerical analyses. Major conclusions obtained from this study are as follows: (1) the new dampers have stable hysteresis behavior under large displacements; (2) finite element analyses are able to simulate the behavior of the damper with satisfactory accuracy; and (3) simplified design methodology of the damper is effective.
基金Project(2005k002-c-2) supported by the Science and Technology Development Program of Railways Department, China
文摘Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously.
基金Funded by the Special Found of the Ministry of Education for Doctor Station Subject(No.20115522110001)
文摘The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge.
文摘Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Construction Technology proposed SuperBridge800, an edge girder type UHPC cable stayed bridge with central span of 800 m, through its detailed design. The bridge is designed to be erected through the connection of precast UHPC segments. The precast UHPC segment is monolithically composed of one ribbed deck slab and edge girders at each side. The connection between the precast segments is achieved by steel bars at the edge girders and by UHPC cast-in-place wet joint at the slab. Despite of the outstanding mechanical performance of UHPC, the fabrication of large-sized members is a difficult task since UHPC hardens faster than normal concrete and requires a special curing process. Therefore, the constructability of large-sized UHPC segment should be secured to achieve SuperBridge800. Besides, the performance of the connection between segments should also be guaranteed, especially in terms of the fatigue performance of the UHPC cast-in-place joint, which constitutes a weak point. To that goal, two half-scaled UHPC segments are manufactured and the constructability is examined by fabricating a large-sized UHPC member connected with respect to the design conditions. This study conducts rolling fatigue test on the so-fabricated large-sized UHPC member. Rolling fatigue test is carried out up to 2 million cycles considering actual vehicle load at each center and quarter points of the member. The test results confirm that the service limit state is satisfied.
文摘When the installation of cables and pipelines needs to go across rivers,bridges are usually adopted to support the cables and pipelines for crossing the rivers.The measure can make full use of the space resources and have no effect on the flow pattern of rivers.For this reason,analysis on the structural-type design of a large-span steel truss bridge specially used for cables has been performed.The numerical results indicate that the stayed-cable bridge with steel truss beam and concrete main tower has better performance and improved structural type caparisoned with that of the beam and arch bridges,and the construction of the major beam can be without the temporary support.
基金The Key Project of the Major Research Plan of Natural Science Foundation of China Under Grant No.90715036the Key Project of the Natural Science Foundation of China Under Grant No.50338020
文摘Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures.
基金funded by the DGUV(Deutsche Gesetzliche Unfallversicherung)BMBF(German Federal Ministry for Education and Research)+1 种基金DSQ(German Paraplegia Foundation)Manchot Foundation and Research Commission of the Medical Faculty of the Heinrich-Heine-University Düsseldorf
文摘Incidence and consequences of spinal cord injuries: World- wide, every year 250,000-500,000 people suffer from spinal cord injury (SCI; www.who.int, 2013). Traumatic lesions of the spinal cord lead to primary and secondary injury mechanisms, which result in axon damage, loss of signal conduction, demyelination of axons and long-lasting deficits in motor and sensory func- tion. The extent of the damage and the subsequent functional loss depend on the spinal level and the severity of the primary injury. Furthermore, pathophysiological and pathomorpholog- ical responses in acute and chronic SCI share similar but also different requirements for treatment.
文摘In the AASHTO Guide Specifications for Seismic Bridge Design Provisions,ductile diaphragms are identified as Permissible Earthquake-Resisting Elements(EREs),designed to help resist seismic loads applied in the transverse direction of bridges.When adding longitudinal ductile diaphragms,a bidirectional ductile diaphragm system is created that can address seismic excitations acting along both the bridge’s longitudinal and transverse axes.This paper investigates bidirectional ductile diaphragms with Buckling Restrained Braces(BRBs)in straight multi-span bridge with simply supported floating spans.The flexibility of the substructures in the transverse and longitudinal direction of the bridge is considered.Design procedures for the bidirectional ductile diaphragms are first proposed.An analytical model of the example bridge with bidirectional ductile diaphragms,designed based on the proposed methodology,is then built in SAP2000.Pushover and nonlinear time history analyses are performed on the bridge model,and corresponding results are presented.The effect of changing the longitudinal stiffness of the bidirectional ductile diaphragms in the end spans connecting to the abutment is also investigated,in order to better understand the impact on the bridge’s dynamic performance.
文摘Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal rigidity, the structural form and the corresponding foundation type of middle pylon are different from those of the ordinary steel pylon, and the complicated dynamic characteristics make the calculation quite difficult. In this article, exploration has been made in selection of similarity ratio and model materials, section simulation, restriction conditions simulation, fixing of mass blocks, fabrication scheme and testing method by taking into account different construction and working conditions such as restriction conditions and working environment of a three-pylon suspension bridge, to conduct the test experimental design of the dynamic behavior of the middle pylon, with the purpose to reveal its dynamic characteristics and make comparison and analysis with theoretical assumptions, to provide basis for anti-wind and anti-seismic design and reference for the design and research of three-pylon two-span suspension bridges in the future.
基金Supported by National "Twelfth Five-Year" Plan for Science&Technology Support of China(Grant No.2011BAK06B05)National High-tech Research and Development Program of China(863 Program,Grant No.2013AA040203)Shanxi Scholarship Council of China(Grant No.2015-088)
文摘Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.
文摘This article introduces the project overview, construction goal and design philosophy of Hong Kong- Zhuhai-Macao Bridge. Based on large scale, factory production, standardization and assemble line, the innova- tive concept is taken as the general principle for design with the emphasis on description of the new material, new technology, new construction method and new equipment used in the design. The application of innovative technology has provided a solid foundation and favorable guarantee for project quality and design service
基金supported by National Natural Science Foundation of China (No. 50708100)National Science and Technology Support Project of China (No. 2006BAC13B02)partially by Basic Research Program of Institute of Mechanics Engineering, China Earthquake Administration (No. 2007B02)
文摘To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two-dimensional finite element model under different seismic SV waves with the assumptions of vertical incidence and oblique incidence to obtain the ground motions, which are used as the excitation input on the pier foundations of the bridge with improved large mass method. The results indicate that canyon topography has significant influences on the ground motions in terms of inci- dent angle. The peak ground acceleration values vary greatly from the bottom of the canyon to the upper comers. Under ver- tical incident SV waves, at the upper comers of canyon the peak ground accelerations greatly increase; whereas the peak ground accelerations diminish at the bottom comers of canyon. Under oblique incident SV waves, the shaking of the canyon slope perpendicular to the incidence direction is much more severe than that of the opposite side of canyon. And the ground surface has been characterized by larger deformations in the case of oblique incident waves. It is also concluded that the low piers and frame of the continuous rigid frame bridge ape more sensitive to the multi-support seismic excitations than the flexible high piers. The canyon topography as well as the oblique incidence of the waves brings the continuous rigid frame bridge severe responses, which should be taken into account in bridge design.
基金National Science and Technology Support Program of China(No.2006BAG04B0)
文摘Sutong Bridge is a cable-stayed bridge with a steel box girder and a main span of 1 088 m.The steel box girder of main span includes five portions:back span large unit,large block of pylon,standard girder,back span closure girder and middle span closure girder.Each back span large unit is fabricated by welding several deck segments together in factory,and is erected by floating crane.As navigational clearance of the main bridge is high,the traditional truss lifting device can't satisfy the requirement of domestic lifting cranes for this kind of lifting height and weight.Hence,a kind of lighter lifting device for the erection of back span large units was accepted for this bridge.In this paper,the design and use of this lifting device is introduced.The upper structure used lifting gantry to install the standard girder segment by cantilever method.Because the bridge's navigation clearance is high,and the girder segment is wide and heavy,the meteorology and hydrology condition of the bridge district is abominable,and the requirements of long cable girder side pull-in,structure and performance propose high request to the lifting gantry.In this paper,the design and use key point of long cable pull-in angle adjustment device integrate into lifting gantry is introduced.
文摘The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is to contribute to the Flow-3D software by means of some modification and adjustment in the sediment scour model and shallow water model. An assessment of turbulence model adopted with the parameters of the Melville experiment to estimate the maximum scour-depth was performed. In the simulation results, the alternate eddy formation and shedding were repeated while the Karman vortex street formed behind the pier for the large eddy simulation LES turbulence model is more realistic in the flow phenomenon. The results of the scour development of large eddy simulation (LES) turbulence model were found to be more satisfied than the Renormalized group (RNG) turbulence model and close to the prior experiment results. The simulated scour results were significantly different with the observed data collected from previous literature in the reason of some unsuitability of meshing method in Flow-3D software.