A rare large Type Ⅳμ burst, appeared above active region NOAA/USAF 5278 was observed at Yunnan Observatory with Phoenix Ⅱ Microwave Spectrometer at three frequencies (4 00, 2 84 and 1 42 GHz) on December 16, 1988. ...A rare large Type Ⅳμ burst, appeared above active region NOAA/USAF 5278 was observed at Yunnan Observatory with Phoenix Ⅱ Microwave Spectrometer at three frequencies (4 00, 2 84 and 1 42 GHz) on December 16, 1988. The burst consisted of 5 main peaks with a quasiperiod of 12 5 min, on which many complex millisecond spike emissions were superimposed. Within the first main peak there were 8 secondary peaks with a quasi period of 98s (at 4 00 GHz), 72s (2 84 GHz) and 60s (1 42 GHz). A semi quantitative explanation is given for the variation of the quasi period with frequency in terms of MHD modulated oscillations in the magnetic flux tube.展开更多
We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of th...We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument.展开更多
We analyze mathematical models governing planar flow of chemical reaction from unburnt gases to burnt gases in certain physical regimes in which diffusive effects such as viscosity and heat conduction are significant....We analyze mathematical models governing planar flow of chemical reaction from unburnt gases to burnt gases in certain physical regimes in which diffusive effects such as viscosity and heat conduction are significant. These models can be then formulated as the Navier-Stokes equations for exothermically reacting compressible fluids. We first establish the existence and dynamic behavior, including stability, regularity, and large-time behavior, of global discontinuous solutions of large oscillation to the Navier-Stokes equations with constant adiabatic exponent γ and specific heat Cv. Our approach for the existence and regularity is to combine the difference approximation techniques with the energy methods, total variation estimates, and weak convergence arguments to deal with large jump discontinuities; and for large-time behavior is an a posteriori argument directly from the weak form of the equations. The approach and ideas we develop here can be applied to solving a more complicated model where γand cv vary as the phase changes; and we then describe this model in detail and contrast the results on the asymptotic behavior of the solutions of these two different models. We also discuss other physical models describing dynamic combustion.展开更多
The clear differences between the atmosphere of Mars and the Earth coupled with the lack of a domestic research basis were significant challenges for the aerodynamic prediction and verification of Tianwen-1.In additio...The clear differences between the atmosphere of Mars and the Earth coupled with the lack of a domestic research basis were significant challenges for the aerodynamic prediction and verification of Tianwen-1.In addition,the Mars entry,descent,and landing(EDL)mission led to specific requirements for the accuracy of the aerodynamic deceleration performance,stability,aerothermal heating,and various complex aerodynamic coupling problems of the entry module.This study analyzes the key and difficult aerodynamic and aerothermodynamic problems related to the Mars EDL process.Then,the study process and results of the design and optimization of the entry module configuration are presented along with the calculations and experiments used to obtain the aerodynamic and aerothermodynamic characteristics in the Martian atmosphere.In addition,the simulation and verification of the low-frequency free oscillation characteristics under a large separation flow are described,and some special aerodynamic coupling problems such as the aeroelastic buffeting response of the trim tab are discussed.Finally,the atmospheric parameters and aerodynamic characteristics obtained from the flight data of the Tianwen-1 entry module are compared with the design data.The data obtained from the aerodynamic design,analysis,and verification of the Tianwen-1 entry module all meet the engineering requirements.In particular,the flight data results for the atmospheric parameters,trim angles of attack,and trim axial forces are within the envelopes of the prediction deviation zones.展开更多
文摘A rare large Type Ⅳμ burst, appeared above active region NOAA/USAF 5278 was observed at Yunnan Observatory with Phoenix Ⅱ Microwave Spectrometer at three frequencies (4 00, 2 84 and 1 42 GHz) on December 16, 1988. The burst consisted of 5 main peaks with a quasiperiod of 12 5 min, on which many complex millisecond spike emissions were superimposed. Within the first main peak there were 8 secondary peaks with a quasi period of 98s (at 4 00 GHz), 72s (2 84 GHz) and 60s (1 42 GHz). A semi quantitative explanation is given for the variation of the quasi period with frequency in terms of MHD modulated oscillations in the magnetic flux tube.
基金supported by"the Fundamental Research Funds for the Central Universities"
文摘We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument.
基金Supported in part by the National Science Foundation under Grants DMS-9971793, INT-9987378,and INT-9726215.Supported in part by the National Science Foundation under Grant DMS-9703703.Supported in part by the National Science Foundation under Grants
文摘We analyze mathematical models governing planar flow of chemical reaction from unburnt gases to burnt gases in certain physical regimes in which diffusive effects such as viscosity and heat conduction are significant. These models can be then formulated as the Navier-Stokes equations for exothermically reacting compressible fluids. We first establish the existence and dynamic behavior, including stability, regularity, and large-time behavior, of global discontinuous solutions of large oscillation to the Navier-Stokes equations with constant adiabatic exponent γ and specific heat Cv. Our approach for the existence and regularity is to combine the difference approximation techniques with the energy methods, total variation estimates, and weak convergence arguments to deal with large jump discontinuities; and for large-time behavior is an a posteriori argument directly from the weak form of the equations. The approach and ideas we develop here can be applied to solving a more complicated model where γand cv vary as the phase changes; and we then describe this model in detail and contrast the results on the asymptotic behavior of the solutions of these two different models. We also discuss other physical models describing dynamic combustion.
基金This research comes from the Tianwen-1 Mars exploration mission.The authors gratefully acknowledge the contributions of the entire Tianwen-1 design team.
文摘The clear differences between the atmosphere of Mars and the Earth coupled with the lack of a domestic research basis were significant challenges for the aerodynamic prediction and verification of Tianwen-1.In addition,the Mars entry,descent,and landing(EDL)mission led to specific requirements for the accuracy of the aerodynamic deceleration performance,stability,aerothermal heating,and various complex aerodynamic coupling problems of the entry module.This study analyzes the key and difficult aerodynamic and aerothermodynamic problems related to the Mars EDL process.Then,the study process and results of the design and optimization of the entry module configuration are presented along with the calculations and experiments used to obtain the aerodynamic and aerothermodynamic characteristics in the Martian atmosphere.In addition,the simulation and verification of the low-frequency free oscillation characteristics under a large separation flow are described,and some special aerodynamic coupling problems such as the aeroelastic buffeting response of the trim tab are discussed.Finally,the atmospheric parameters and aerodynamic characteristics obtained from the flight data of the Tianwen-1 entry module are compared with the design data.The data obtained from the aerodynamic design,analysis,and verification of the Tianwen-1 entry module all meet the engineering requirements.In particular,the flight data results for the atmospheric parameters,trim angles of attack,and trim axial forces are within the envelopes of the prediction deviation zones.