By applying man-machine-environment system engineering theory, safety risks on large scale field operation project have been evaluated in this article. The factors concerning with the man, machine and environment in s...By applying man-machine-environment system engineering theory, safety risks on large scale field operation project have been evaluated in this article. The factors concerning with the man, machine and environment in system were proposed separately. The value for lowest indexs was determined by decision-making of expert group. The weights were calculated based on AHP, and then safety risk assessment in different layers was made. The results show that the assessment method is reasonable, and it is significant for large scale field operation project safety managerment.展开更多
The availalability. use, development, and management of water resources are receivingincreasing attentioll worldwide. As demands for water continues to grow and the resources continue todwindle or at best remain cons...The availalability. use, development, and management of water resources are receivingincreasing attentioll worldwide. As demands for water continues to grow and the resources continue todwindle or at best remain constant at some level, it has become increasingly necessary to develop moreand more methods for the managaement of this scarce resource especially in arid and semiarid regions.The necessity of integrated planning and management of the basin arises because of insufficient anderratic nature of the rainfall. The purpose of this paper is to determine the optimal operation policy ofthe water resources for the river basins to meet the multi-objective demands of water requirements. Anoptimization approach has been developed to aid decision making in the real time allocation of waterwithin t he context of a large-scale, multi-objective, complex river system. The optimization approach isbased on the Progressive Optimality Algorithm, Golden Search techniqlle, and the ε-constraint method.As a case study, the present methodology is applied to the Yellow River Reservoir system in China andpresented in a companion paper in this issue.展开更多
基金supported by the National Natural Science Foundation of China(71172124,71201124)Projects of the National Social Science Foundation of China(15GJ003-245)Science Foundation for The Youth Scholars of Xi'an Institute of High Technology and Science(2015QNJJ011)
文摘By applying man-machine-environment system engineering theory, safety risks on large scale field operation project have been evaluated in this article. The factors concerning with the man, machine and environment in system were proposed separately. The value for lowest indexs was determined by decision-making of expert group. The weights were calculated based on AHP, and then safety risk assessment in different layers was made. The results show that the assessment method is reasonable, and it is significant for large scale field operation project safety managerment.
文摘The availalability. use, development, and management of water resources are receivingincreasing attentioll worldwide. As demands for water continues to grow and the resources continue todwindle or at best remain constant at some level, it has become increasingly necessary to develop moreand more methods for the managaement of this scarce resource especially in arid and semiarid regions.The necessity of integrated planning and management of the basin arises because of insufficient anderratic nature of the rainfall. The purpose of this paper is to determine the optimal operation policy ofthe water resources for the river basins to meet the multi-objective demands of water requirements. Anoptimization approach has been developed to aid decision making in the real time allocation of waterwithin t he context of a large-scale, multi-objective, complex river system. The optimization approach isbased on the Progressive Optimality Algorithm, Golden Search techniqlle, and the ε-constraint method.As a case study, the present methodology is applied to the Yellow River Reservoir system in China andpresented in a companion paper in this issue.